Skip to main content
Log in

Analysis of Free Vibrations of Axisymmetric Functionally Graded Generalized Viscothermoelastic Cylinder Using Series Solution

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The analysis of free vibrations of axisymmetric functionally graded isotropic viscothermoelastic hollow cylinder has been investigated in the radial direction. The material of viscothermoelastic cylinder has been assumed to be graded in the radial direction due to simple exponent law. The governing partial differential equations are transformed into ordinary differential equations with th e help of time harmonic vibrations.

Methods

The extended power series solution of matrix Fröbenius method has been applied to derive the analytical solutions for stresses, displacement and temperature change. The frequency equations of various types of modes of vibrations have been derived in a compact form. To investigate the numerical features of vibrations, the analytical results of frequency equations have been further solved with the help of fixed-point numerical iteration technique using MATLAB software tools. The polymethyl methacrylate material has been used for numerical computations.

Results and Conclusions

The numerical results have been presented for frequency shift, natural frequencies, thermoelastic damping, stresses, displacement and variation of temperature. With the increase in the values of grading index, variation of vibrations in field functions go on decreasing. The numerical results show alternate variations in homogenous materials in contrast to inhomogeneous materials. The behaviour of deformation, temperature change, frequency shift and thermoelastic damping have been monitored (increase or decrease) with the help of grading index (in-homogeneity parameter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tarlochan F (2012) Functionally graded material: a new breed of engineered material. J Appl Mech Eng 1:1–2. https://doi.org/10.4172/2168-9873.1000e115

    Article  Google Scholar 

  2. Bagri A, Eslami MR (2007) A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J Therm Stress 30:911–930. https://doi.org/10.1080/01495730701496079

    Article  Google Scholar 

  3. Bagri A, Eslami MR (2008) Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory. Compos Struct 83:168–179. https://doi.org/10.1016/J.COMPSTRUCT.2007.04.024

    Article  Google Scholar 

  4. Chen WT (1996) On some problems in spherically isotropic elastic materials. J Appl Mech 33:539–546. https://doi.org/10.1115/1.3625119

    Article  MATH  Google Scholar 

  5. Jabbari M, Dehbani H, Eslami MR (2011) An exact solution for classic coupled thermoelasticity in cylinderical co-ordinates. J Pressure Vessel Tech 133(051204):1–11. https://doi.org/10.1115/1.4003459

    Article  Google Scholar 

  6. Mallik SH, Kanoria M (2007) Generalized thermoelastic functionally graded solid with a periodically varying heat sources. Int J Solid Sruct 44:7633–7645. https://doi.org/10.1016/j.ijsolstr.2007.05.001

    Article  MATH  Google Scholar 

  7. Akulenko LD, Nesterov SV (2012) The oscillations of a rod in an in-homogenous elastic medium. J Appl Math Mech 76:337–341

    Article  MathSciNet  Google Scholar 

  8. Sharma JN, Singh H, Sharma YD (2011) Modeling of thermoelastic damping and frequency shift of vibrations in a transversely isotropic solid cylinder. Multidiscip Model Mater Struct 7:245–265. https://doi.org/10.1108/1536-540911178243

    Article  Google Scholar 

  9. Keles I, Tutuncu N (2011) Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres. J Appl Mech 78:61014. https://doi.org/10.1115/1.4003914

    Article  Google Scholar 

  10. Hunter C, Sneddon I, Hill R (1960) Visco-elastic waves in progress in solid mechanics. Wiley Inter Science, New York

    Google Scholar 

  11. Flugge W (1960) Visco-Elasticity. Blasdell, London

    Google Scholar 

  12. Sharma JN (2005) Some considerations on the rayleigh-lamb wave propagation in visco-thermoelastic plates. J Vib Control 11:1311–1335. https://doi.org/10.1177/1077546305058267

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharma JN, Chand R, Chand D (2007) Thermoviscoelastic waves due to time harmonic loads acting on the boundary of a solid halfspace. Int J Appl Mech Eng 12:781–797

    Google Scholar 

  14. Sharma JN, Chand R, Othman MIA (2009) On the propagation of lamb waves in viscothermoelastic plates under fluid loadings. Int J Eng Sci 47:391–404. https://doi.org/10.1016/j.ijengsci.2008.10.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Othman MIA, Ezzat MA, Zaki SA, El-Karamany AS (2002) Generalized thermo-viscoelastic plane waves with two relaxation times. Int J Eng Sci 40:1329–1347. https://doi.org/10.1016/S0020-7225(02)00023-X

    Article  MathSciNet  MATH  Google Scholar 

  16. Sharma JN, Sharma DK, Dhaliwal SS (2012) Three-dimensional free vibration analysis of a viscothermoelastic hollow sphere. Open J Acoust 2:12–24. https://doi.org/10.4236/oja.2012.21002

    Article  Google Scholar 

  17. Sharma JN, Sharma DK, Dhaliwal SS (2013) Free vibration analysis of a rigidly fixed viscothermoelastic hollow sphere. Indian J Pure Appl Math 44:559–586. https://doi.org/10.1007/s13226-013-0030-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharma DK, Sharma JN, Dhaliwal SS, Walia V (2014) Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta Mech Sinica 30:100–111. https://doi.org/10.1007/s10409-014-0016-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Popov VL (2010) Contact mechanics and friction: physical principles and applications, 1st edn. Springer, Berlin

    Book  Google Scholar 

  20. Sharma JN, Sharma PK, Mishra KC (2014) Analysis of free vibrations in axisymmetric functionally graded thermoelastic cylinders. Acta Mech 225:1581–1594. https://doi.org/10.1007/s00707-013-1010-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Hosseini SM, Abolbashari MH (2010) General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading. Acta Mech 212:1–19

    Article  Google Scholar 

  22. Zenkour AM, Abbas IA (2014) Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method. J Vib Control 20:1907–1919

    Article  MathSciNet  Google Scholar 

  23. Ezzat MA, El-Bary AA (2017) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsyst Technol 23:2447–2458

    Article  Google Scholar 

  24. Tripathi JJ, Kedar GD, Deshmukh KC (2015) Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply. Acta Mech 226:2121–2134. https://doi.org/10.1007/s00707-015-1305-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Punera D, Kant T, Desai YM (2018) Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. J Therm Stress 41:54–79. https://doi.org/10.1080/01495739.2017.1373379

    Article  Google Scholar 

  26. Sharma JN, Sharma PK, Mishra KC (2016) Dynamic response of functionally graded cylinders due to time-dependent heat flux. Meccanica 51:139–154. https://doi.org/10.1007/s11012-015-0191-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Ezzat MA, El-Bary AA (2017) On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsyst Technol 23:3263–3270

    Article  Google Scholar 

  28. Li ZL, Liu ZQ, Sun DG, Yan BJ, Meng J (2018) Fractional maxwell model of viscoelastic oscillator and its frquency response. J Vib Eng Technol 6:1–6

    Article  Google Scholar 

  29. Choudhary S, Kumar S, Sikka JS (2017) Thermo-mechanical interactions in a fractional order generalized thermoelastic solid with diffusion. Microsyst Technol 23:5435–5446

    Article  Google Scholar 

  30. Singh SJ, Harsha SP (2018) Nonlinear vibration analysis of Sigmoid functionally graded sandwich plate with Ceremic-FGM-metal layers. J Vib Eng Technol. https://doi.org/10.1007/s42417-018-0058-8

    Article  Google Scholar 

  31. Sang S, Sandgren E (2019) Study of in-plane wave propagation in two dimensional anisotropic elastic meta-materials. J Vib Eng Technol. https://doi.org/10.1007/s42417-018-0076-629

    Article  Google Scholar 

  32. Moosapour M, Hajabasi MA, Ehteshami H (2014) Thermoelastic damping effect analysis in micro flexural resonator of atomic force microscopy. Appl Math Model 38:2716–2733

    Article  MathSciNet  Google Scholar 

  33. Wang YZ, Liu D, Wang Q, Zhou JZ (2018) Thermoelastic interaction in functionally graded thick hollow cylinder with temperature-dependent properties. J Therm Stresses 41(4):399–417

    Article  Google Scholar 

  34. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309. https://doi.org/10.1016/0022-5096(67)90024-5

    Article  MATH  Google Scholar 

  35. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7. https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  36. Tomantschger KW (2002) Series solutions of coupled differential equations with one regular singular point. J Comput Appl Math 14:773–783. https://doi.org/10.1016/S0377-0427(01)00598-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Neuringer JL (1978) The Frobenius method for complex roots of the indicial equation. Int J Math Educ Sci Technol 9:71–77. https://doi.org/10.1080/0020739780090110

    Article  MathSciNet  MATH  Google Scholar 

  38. Cullen CG (1990) Matrices and linear transformations. Dover

  39. Pierce AD (1981) Acoustics : an introduction to its physical principles and applications. McGraw-Hill Book Co, New York

    Google Scholar 

  40. Dhaliwal R, Singh A (1980) Dynamic coupled thermoelasticity. Hindustan Publishing Corporation, Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$g_{1} (s_{j} + 1) = \left( {\begin{array}{*{20}c} {(s_{j} + 1)^{2} - \eta^{2} } & 0 \\ 0 & {\left( {(s_{j} + 1)^{2} - \frac{{\gamma^{2} }}{4}} \right)} \\ \end{array} } \right)\,$$
(61)
$$g_{2} (s_{j} ) = \left( {\begin{array}{*{20}c} 0 & {A^{*} \left( {s_{j} + 1 + \frac{\gamma }{2}} \right)} \\ {B^{*} \left( {s_{j} + 1 + \frac{2 - \gamma }{2}} \right)} & 0 \\ \end{array} } \right)$$
(62)
$$\begin{aligned} e_{11}^{2} (s_{j} ) = g_{12}^{0} (s_{j} )\,e_{21}^{1} (s_{j} ) - g_{11}^{0} (s_{j} )\,\,\, \hfill \\ \,e_{22}^{2} (s_{j} ) = g_{21}^{0} (s_{j} )\,e_{12}^{1} (s_{j} ) - g_{22}^{0} (s_{j} )\, \hfill \\ \end{aligned}$$
(63)
$$\begin{aligned} e_{12}^{3} (s_{j} ) = g_{12}^{1} (s_{j} )\,e_{22}^{2} (s_{j} ) - g_{11}^{1} (s_{j} )\,e_{12}^{1} \,(s_{j} )\,\,\,\, \hfill \\ \,e_{21}^{3} (s_{j} ) = g_{21}^{1} (s_{j} )\,e_{11}^{2} (s_{j} ) - g_{22}^{1} (s_{j} )\,e_{21}^{1} \,(s_{j} ) \hfill \\ \end{aligned}$$
(64)
$$\begin{aligned} e_{11}^{4} (s_{j} ) = g_{12}^{2} (s_{j} )\,e_{21}^{3} (s_{j} ) - g_{11}^{2} (s_{j} )\,e_{11}^{2} \,(s_{j} )\,\,\,\, \hfill \\ \,e_{22}^{4} (s_{j} ) = g_{21}^{2} (s_{j} )\,e_{12}^{3} (s_{j} ) - g_{22}^{2} (s_{j} )\,e_{21}^{2} \,(s_{j} ) \hfill \\ \end{aligned}$$
(65)
$$\begin{aligned} e_{12}^{5} (s_{j} ) = g_{12}^{3} (s_{j} )\,e_{22}^{4} (s_{j} ) - g_{11}^{3} (s_{j} )\,e_{12}^{3} \,(s_{j} )\,\,\,\, \hfill \\ \,e_{21}^{5} (s_{j} ) = g_{21}^{3} (s_{j} )\,e_{11}^{4} (s_{j} ) - g_{22}^{3} (s_{j} )\,e_{21}^{3} \,(s_{j} ) \hfill \\ \end{aligned}$$
(66)
$$e_{11}^{2k} (s_{j} ) = g_{12}^{2k - 2} (s_{j} )\,e_{21}^{2k - 1} (s_{j} ) - g_{11}^{2k - 2} (s_{j} )\,e_{11}^{2k - 2} \,(s_{j} )\,\,\,\,$$
(67)
$$e_{22}^{2k} (s_{j} ) = g_{21}^{2k - 2} (s_{j} )\,e_{12}^{2k - 1} (s_{j} ) - g_{22}^{2k - 1} (s_{j} )\,e_{21}^{2k - 1} \,(s_{j} )$$
(68)
$$e_{12}^{2k + 1} (s_{j} ) = g_{12}^{2k - 1} (s_{j} )\,e_{22}^{2k} (s_{j} ) - g_{11}^{2k - 1} (s_{j} )\,e_{12}^{2k - 1} \,(s_{j} )\,\,\,\,$$
(69)
$$e_{21}^{2k + 1} (s_{j} ) = g_{21}^{2k - 1} (s_{j} )\,e_{11}^{2k} (s_{j} ) - g_{22}^{2k - 1} (s_{j} )\,e_{21}^{2k - 1} \,(s_{j} )$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Mittal, H. Analysis of Free Vibrations of Axisymmetric Functionally Graded Generalized Viscothermoelastic Cylinder Using Series Solution. J. Vib. Eng. Technol. 8, 783–798 (2020). https://doi.org/10.1007/s42417-019-00178-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00178-1

Keywords

Navigation