Kim SK, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12(6):1129–1141. https://doi.org/10.1007/s12541-011-0151-3
Article
Google Scholar
Priya SJ (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182. https://doi.org/10.1007/s10832-007-9043-4
Article
Google Scholar
Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18. https://doi.org/10.1016/j.rser.2017.01.073
MathSciNet
Article
Google Scholar
Ajitsaria J, Choe SY, Shen D, Kim DJ (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16(2):447–454. https://doi.org/10.1088/0964-1726/16/2/024
Article
Google Scholar
Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New York. https://doi.org/10.1002/9781119991151
Book
Google Scholar
Sodano HA, Park G, Leo DJ, Inman DJ (2003) Model of piezoelectric power harvesting beam. In: ASME international mechanical engineering congress and expo, 15–21 Nov 2003, Washington DC, vol 40, no 2. http://dx.doi.org/10.1115/IMECE2003-43250
Yu S, He S, Li W (2010) Theoretical and experimental studies of beam bimorph piezoelectric power harvesters. J Mech Mater Struct 5(3):427–445. https://doi.org/10.2140/jomms.2010.5.427
Article
Google Scholar
Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:11–14. https://doi.org/10.1063/1.3159815
Article
Google Scholar
Gammaitoni L, Neri I, Vocca H (2009) Nonlinear oscillators for vibration energy harvesting. Appl Phys Lett 94:164102. https://doi.org/10.1063/1.3120279
Article
Google Scholar
Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:023001. https://doi.org/10.1088/0964-1726/22/2/023001
Article
Google Scholar
Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21:1867–1897. https://doi.org/10.1177/1045389X10390249
Article
Google Scholar
Daqaq MF, Masana R, Erturk A, Quinn DD (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66(4):040801–040801-23. https://doi.org/10.1115/1.4026278
Article
Google Scholar
Moon FC, Holmes P (1979) A magnetoelastic strange attractor. J Sound Vib 65:275–296. https://doi.org/10.1016/0022-460x(79)90520-0
Article
MATH
Google Scholar
Litak G, Friswell MI, Adhikari S (2010) Magnetopiezoelastic energy harvesting driven by random excitations. Appl Phys Lett 96:214103-1. https://doi.org/10.1063/1.3436553
Article
Google Scholar
Tam JI (2013) Numerical and experimental investigations into the nonlinear dynamics of a magneto-elastic system. Final report, Department of Mechanical and Aerospace Engineering, Princeton University
Noll M-U, Lentz L, von Wagner U (2019) On the discretization of a bistable cantilever beam with application to energy harvesting. Facta Univ Ser Mech Eng (submitted)
Yan B, Zhou SX, Litak G (2018) Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. Int J Bifurc Chaos. https://doi.org/10.1142/S021812741850092X
Article
MATH
Google Scholar
Zhou S, Cao J, Inman DJ, Lin J, Li D (2016) Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J Sound Vib 373:223–235. https://doi.org/10.1016/j.jsv.2016.03.017
Article
Google Scholar
Zhou Z, Qin W, Zhu P (2017) A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech Syst Signal Process 84:158–168. https://doi.org/10.1016/j.ymssp.2016.07.001
Article
Google Scholar
Erturk A, Inman DJ (2011) Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353. https://doi.org/10.1016/j.jsv.2010.11.018
Article
Google Scholar
Masana R, Daqaq MF (2011) Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib 330:6036–6052. https://doi.org/10.1016/j.jsv.2011.07.031
Article
Google Scholar
Friswell MI, Ali FS, Bilgen O, Adhikari S, Lees AW, Litak G (2012) Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J Intell Mater Syst Struct 23(13):1501–1521. https://doi.org/10.1177/1045389X12455722
Article
Google Scholar
Lan C, Qin W (2017) Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech Syst Signal Process 85:71–81. https://doi.org/10.1016/j.ymssp.2016.07.047
Article
Google Scholar
Stanton SC, McGehee CC, Mann PB (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239:640–653. https://doi.org/10.1016/j.physd.2010.01.019
Article
MATH
Google Scholar
Wang H, Tang L (2017) Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. J Mech Syst Signal Process 86:29–39. https://doi.org/10.1016/j.ymssp.2016.10.001
Article
Google Scholar
Henrotte F, Deliege G, Hameyer K (2002) The eggshell method for the computation of electromagnetic forces on rigid bodies in 2D and 3D. CEFC 2002, Perugia, Italy, 16–18 Apr 2002. https://doi.org/10.1108/03321640410553427
Martens W, von Wagner U, Litak G (2013) Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation. Eur Phys J Spec Top 222:1665–1673. https://doi.org/10.1140/epjst/e2013-01953-5
Article
Google Scholar
Noll M-U, Lentz L (2016) On the refined modeling of the force distribution in a bistable magnetoelastic energy harvesting system due to a magnetic field. Proc Appl Math Mech 16(1):289–290. https://doi.org/10.1002/pamm.201610133
Article
Google Scholar
Kim P, Seok J (2014) A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J Sound Vib 333(21):5525–5547. https://doi.org/10.1016/j.jsv.2014.05.054
Article
Google Scholar
Lentz L (2018) Zur Modellbildung und Analyse von bistabilen Energy-Harvesting-Systemen. Doctoral thesis, TU Berlin. https://doi.org/10.14279/depositonce-7525
Noll M-U, Lentz L (2017) On the modeling of the distributed force in a bistable magnetoelastic energy harvesting system. In: 4th Workshop in devices, materials and structures for energy harvesting and storage in Oulu, Finland
Moon FC (1997) Magneto-solid mechanics. Wiley, New York
Google Scholar
Furlani EP (2001) Permanent magnet and electromechanical devices. Academic Press, New York
Google Scholar
Reich F (2017) Coupling of continuum mechanics and electrodynamics—an investigation of electromagnetic force models by means of experiments and selected problems. Doctoral thesis, TU Berlin. http://dx.doi.org/10.14279/depositonce-6518
Derby N, Olbert S (2010) Cylindrical magnets and ideal solenoids. Am J Phys 78(3):229–235. https://doi.org/10.1119/1.3256157
Article
Google Scholar
de Medeiros LH, Reyne G, Meunier G (1999) About the distribution of forces in permanent magnets. IEEE Trans Magn 34:3560–3563. https://doi.org/10.1109/20.767168
Article
Google Scholar
de Medeiros LH, Reyne G, Meunier G (1998) Comparison of global force calculations on permanent magnets. IEEE Trans Magn 34:3560–3563. https://doi.org/10.1109/20.717840
Article
Google Scholar
McFee S, Webb JP, Lowther DA (1988) A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics. IEEE Trans Magn 24(1):439–442. https://doi.org/10.1109/20.43951
Article
Google Scholar
Noll M-U (2018) Energy harvesting system. https://doi.org/10.6084/m9.figshare.7492208
Noll M-U (2018) Magnetic field. https://doi.org/10.6084/m9.figshare.7492469
Noll M-U (2019) Experimental setup of an energy harvesting system III. https://doi.org/10.6084/m9.figshare.7993115