Skip to main content
Log in

Vibration Analysis of Rotors Under Uncertainty Based on Legendre Series

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In rotor systems, uncertainty can arise in occasions such as manufacture errors and variations in geometry during lifetime. In the presence of uncertainty, the deterministic analysis procedures often fail to give a reasonable estimate of the rotordynamics. This paper employs an interval procedure to quantify effects of bounded uncertainty on variations of the vibration responses.

Methods

A derivative-based Legendre interval method is applied to the uncertainty quantification of rotor systems. It works non-intrusively and can deal with each uncertain parameter individually. The roots of Legendre polynomials are used as collocations and sample responses of the rotor are obtained using the Gauss–Legendre quadrature.

Results

On the basis of the method developed, the vibration characteristics of a rotor under several uncertain parameters are presented. Comparative vibration amplitudes are illustrated by the interval method and the Monte Carlo simulation.

Conclusion

The interval method is verified to possess good numerical performance. Results show that uncertain parameters will significantly influence the vibration behaviors. Unlike the deterministic model, the response is no longer a certain value for a specified speed but a response range which is defined by lower and upper bound. Furthermore, the resonance range is expanded and peak shift is spotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao JS (1996) Rotor dynamics, 3rd edn. New Age International Publishers, New Delhi

    Google Scholar 

  2. Han QK, Chu FL (2013) Dynamic response of cracked rotor-bearing system under time-dependent base movements. J Sound Vib 332:6847–6870

    Article  Google Scholar 

  3. Saxena A, Chouksey M, Parey A (2017) Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system. Mech Mach Theory 107:261–273

    Article  Google Scholar 

  4. Hou L, Chen YS, Cao QJ, Zhang ZY (2015) Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn 79:229–240

    Article  Google Scholar 

  5. Ma H, Lu Y, Wu ZY, Tai XY, Wen BC (2016) Vibration response analysis of a rotational shaft–disk–blade system with blade-tip rubbing. Int J Mech Sci 107:110–125

    Article  Google Scholar 

  6. Li SM (2004) Harmonic wavelet packets method and used on accurate obtaining the orbit of rotor sub-frequency signal. Chin J Mech Eng 40:133–137

    Google Scholar 

  7. Meng G, Gasch R (2000) Stability and stability degree of a cracked flexible rotor supported on journal bearings. J Vib Acoust 122:116–125

    Article  Google Scholar 

  8. Yang YF, Chen H, Jiang TD (2015) Nonlinear response prediction of cracked rotor based on EMD. J Franklin Inst 352:3378–3393

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang YF, Ma ZF, Jiang TD, Lu N (2016) Constant Load Control of a Cam-Follower Oblique-Impact System. J Vib Eng Technol 4:573–580

    Google Scholar 

  10. Kuseyri IS (2017) Adaptive vibration control of rotors with active magnetic bearings. J Vib Eng Technol 5:159–164

    Google Scholar 

  11. Bisoi A, Samantaray AK, Bhattacharyya R (2017) Sommerfeld effect in a gyroscopic overhung rotor-disk system. Nonlinear Dyn 88:1565–1585

    Article  Google Scholar 

  12. Fatima S, Mohanty A, Kazmi H (2016) Fault classification and detection in a rotor bearing rig. J Vib Eng Technol 4:491–498

    Google Scholar 

  13. Ritto T, Lopez R, Sampaio R, Souza de Cursi J (2011) Robust optimization of a flexible rotor-bearing system using the Campbell diagram. Eng Optim 43:77–96

    Article  MathSciNet  Google Scholar 

  14. Li ZG, Jiang J, Zhui T (2016) Non-linear vibration of an angular-misaligned rotor system with uncertain parameters. J Vib Control 22:129–144

    Article  Google Scholar 

  15. Didier J, Sinou JJ, Faverjon B (2012) Multi-dimensional harmonic balance with uncertainties applied to rotor dynamics. J Vib Acoustics 134:061003

    Article  Google Scholar 

  16. Didier J, Faverjon B, Sinou JJ (2012) Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. J Vib Control 18:712–732

    Article  MathSciNet  MATH  Google Scholar 

  17. Daróczy L, Janiga G, Thévenin D (2016) Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion. Energy 113:399–412

    Article  Google Scholar 

  18. Sinou JJ, Jacquelin E (2015) Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response. Mech Syst Signal Process 50–51:718–731

    Article  Google Scholar 

  19. Sinou JJ, Didier J, Faverjon B (2015) Stochastic non-linear response of a flexible rotor with local non-linearities. Int J Non-Linear Mech 74:92–99

    Article  Google Scholar 

  20. Murthy R, Mignolet MP, El-Shafei A (2010) Nonparametric stochastic modeling of uncertainty in rotordynamics—part i: formulation. J Eng Gas Turbines Power 132:092501

    Article  Google Scholar 

  21. Murthy R, Mignolet MP, El-Shafei A (2010) Nonparametric stochastic modeling of uncertainty in rotordynamics—part II: applications. J Eng Gas Turbines Power 132:092502

    Article  Google Scholar 

  22. Gan CB, Wang YH, Yang SX, Cao YL (2014) Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset. Int J Mech Sci 78:126–134

    Article  Google Scholar 

  23. Liao HT (2014) Global resonance optimization analysis of nonlinear mechanical systems: application to the uncertainty quantification problems in rotor dynamics. Commun Nonlinear Sci Numer Simul 19:3323–3345

    Article  MathSciNet  Google Scholar 

  24. Borges J, Silva A, Araújo C, Fernandes E, Pimentel R, Santiago A (2016) Rotor-bearing vibration control system based on fuzzy controller and smart actuators. The International Journal of Multiphysics 7:197–205

    Article  Google Scholar 

  25. Dourado A, Cavalini A Jr, Steffen V Jr (2017) Uncertainty quantification techniques applied to rotating systems: A comparative study, Journal of Vibration and Control, Article ID 1077546317698556

  26. Ma YH, Liang ZC, Chen M, Hong J (2013) Interval analysis of rotor dynamic response with uncertain parameters. J Sound Vib 332:3869–3880

    Article  Google Scholar 

  27. Moens D, Hanss M (2011) Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem Anal Des 47:4–16

    Article  Google Scholar 

  28. Qiu ZP, Ma LH, Wang X (2009) Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J Sound Vib 319:531–540

    Article  Google Scholar 

  29. Qiu ZP, Wang X (2005) Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int J Solids Struct 42:4958–4970

    Article  MATH  Google Scholar 

  30. Wu JL, Zhang YQ, Chen LP, Luo Z (2013) A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl Math Model 37:4578–4591

    Article  MathSciNet  MATH  Google Scholar 

  31. Jacquelin E, Adhikari S, Friswell M, Sinou JJ (2016) Role of roots of orthogonal polynomials in the dynamic response of stochastic systems. J Eng Mech 142:06016004

    Article  Google Scholar 

  32. Bateman H, Erdélyi A (1953) Higher transcendental functions. McGraw-Hill, New York

    MATH  Google Scholar 

  33. Spiegel MR (1991) Advanced mathematics. McGraw-Hill, New York

    Google Scholar 

  34. Odibat Z (2011) On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations. J Comput Appl Math 235:2956–2968

    Article  MathSciNet  MATH  Google Scholar 

  35. Parand K, Razzaghi M (2004) Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys Scr 69:353–357

    Article  MATH  Google Scholar 

  36. Xiu D, Karniadakis GE (2002) Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Mech Eng 191:4927–4948

    Article  MathSciNet  MATH  Google Scholar 

  37. Chantrasmi T, Doostan A, Iaccarino G (2009) Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces. J Comput Phys 228:7159–7180

    Article  MathSciNet  MATH  Google Scholar 

  38. Chantrasmi T, Iaccarino G (2012) Forward and backward uncertainty propagation for discontinuous system response using the padé-legendre method. Int J Uncertain Quan 2:125–143

    Article  Google Scholar 

  39. Wang C, Qiu ZP, Yang YW (2016) Collocation methods for uncertain heat convection-diffusion problem with interval input parameters. Int J Therm Sci 107:230–236

    Article  Google Scholar 

  40. Dimarogonas AD (1995) Interval analysis of vibrating systems. J Sound Vib 183:739–749

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Aerospace Science, Technology Innovation Fund under Grant No. 2016KC060013 and NPU Aoxiang New Star.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Ren, X. & Yang, Y. Vibration Analysis of Rotors Under Uncertainty Based on Legendre Series. J. Vib. Eng. Technol. 7, 43–51 (2019). https://doi.org/10.1007/s42417-018-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-018-0078-4

Keywords

Navigation