Skip to main content
Log in

Comparison of Thermal Shock Damage and Slag Corrosion in Castable Refractories

  • Research and Development
  • Published:
Interceram - International Ceramic Review

Abstract: This paper compares the thermal shock damage resistance and the slag corrosion resistance of a high-alumina and an alumina-containing andalusite refractory castable. Thermal shock damage resistance was analyzed through thermal cycling and thermal shock damage resistance parameters. Thermal shock cycling damage was analyzed using the dynamic modulus of elasticity (E) and the modulus of rupture (MOR) before and after the thermal shock cycles. The alumina-containing andalusite castable showed superior thermal shock damage resistance in both parameters. The high-alumina castable showed a higher resistance to slag corrosion. These results were linked to material selection for specific industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T. Vert, Refractory Material Selection for Steelmaking, John Wiley & Sons, Inc, Hoboken, New Jersey, 2016.

  2. D.P.H. HASSELMAN, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Am. Ceram. Soc. 52 (1969) 600-604.

  3. C.A. Schacht, Refractories Handbook, CRC Press, 2004.

  4. J. Rodrigues, V.C. Pandolfelli, thermal treatment temperature and its influence on the thermal shock parameters of refractory castables, 51 (2002) 186-189.

  5. D.Y. Miyaji, T. Tonnesen, J.A. Rodrigues, Fracture energy and thermal shock damage resistance of refractory castables containing eutectic aggregates, Ceram. Int. 40 (2014) 15227-15239.

  6. Â. Cristante, L.A. Nascimento, E.S. Neves, F. Vernilli, Study of the castable selection for blast furnace blowpipe, Ceram. Int. 47 (2021) 19443-19454.

  7. S. Zhang, W.E. Lee, Use of phase diagrams in studies of refractories corrosion, Int. Mater. Rev. 45 (2000) 41-58.

  8. J. Poirier, F. Qafssaoui, J.P. Ildefonse, M.L. Bouchetou, Analysis and interpretation of refractory microstructures in studies of corrosion mechanisms by liquid oxides, J. Eur. Ceram. Soc. 28 (2008) 1557-1568.

  9. I. PERETZ, R.C. BRADT, Linear Thermal Expansion Coefficients of Mullite-Matrix Aluminosilicate Refractory Bodies, J. Am. Ceram. Soc. 66 (1983) 823-829.

  10. V.R. Salvini, V.C. Pandolfelli, R.C. Bradt, Extension of Hasselman's thermal shock theory for crack/microstructure interactions in refractories, Ceram. Int. 38 (2012) 5369-5375.

  11. G.C. Ribeiro, W.S. Resende, J.A. Rodrigues, S. Ribeiro, Thermal shock resistance of a refractory castable containing andalusite aggregate, Ceram. Int. 42 (2016) 19167-19171.

  12. J. NAKAYAMA, H. ABE, R.C. BRADT, Crack Stability in the Work-of-Fracture Test: Refractory Applications, J. Am. Ceram. Soc. 64 (1981) 671-675.

  13. W.J. Lee, E.D. Case, Comparison of saturation behavior of thermal shock damage in a variety of brittle materials, Mater. Sci. Eng. A. 154 (1992) 1-9.

  14. N.M. Rendtorff, L.B. Garrido, E.F. Aglietti, Thermal shock resistance and fatigue of Zircon-Mullite composite materials, Ceram. Int. 37 (2011) 1427-1434.

  15. L.E.M. HF, Phase Diagrams for Ceramists, McGraw-Hill Companies, The, 1975.

Download references

Acknowledgment

The authors would like to thank CAPES, Companhia Siderúrgica Nacional (CSN), and Fundação de Apoio à Ciência Tecnologia e Educação (FACTE), and Coordenação de Aperfeiçoamento de Pessoal Nível Superior - Brasil (CAPES).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristante, Â., Vernilli, F. Comparison of Thermal Shock Damage and Slag Corrosion in Castable Refractories. Interceram. - Int. Ceram. Rev. 70, 32–37 (2021). https://doi.org/10.1007/s42411-021-0462-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-021-0462-z

Navigation