Skip to main content
Log in

Addition of limestone at the expense of gypsum in Portland cement

  • Research and Development
  • Cement
  • Published:
Interceram - International Ceramic Review

Abstract

The influence of the addition of limestone at the expense of gypsum in Portland cement was investigated. Results showed that with the gradual replacement of very fine limestone instead of gypsum the hydration process improves, enhances at all curing times until 90 days. On this basis, the hydration heat, bound water, free lime contents, bulk density, compressive strength improved, were enhanced, while the apparent porosity decreased. In contrast, the water/cement ratio, both the initial, the final setting times decreased. These results were confirmed with FTIR spectra, SEM-EDAX analysis. SEM showed the formation of carboaluminate hydrates in cement pastes containing limestone, CSH, SO4−2, CO3−2, whilst the peaks of EDAX showed elements of Al+3, Fe+3, Ca+2, Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Bonavetti, V., Donza, H., Menéndez, G., Cabrera, O., Irassar, E.F.: Limestone filler cement in low w/c concrete: a rational use of energy. Cem. Conc. Res. 33 (2003) 865—871

  2. Corinaldesi, V., Moriconi, G., Naik, T.R.: Characterization of marble powder for its use in mortar. Concrete, Construction, Building Mater. 24 (2010) 113—117

  3. Demirel, B.: The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete. Int. J. Phys. Sci. 5 (2010) [9], 1372—1380

  4. Regourd, M.: Special cements with additions. Proc. 8th Congress on the Chemistry of Cements, Rio de Janeiro, Brazil 1 (1986), 119—229

  5. El-Didamony, H., Salem, T., Gabr, N., Mohamed, T.: Limestone as a retarder, filler in limestone blended cement. Ceram.-Silik. 39 (1995) 15—19

  6. Heikal, M., El-Didamony, H., Morsy, M.S.: Limestone-filled pozzolanic cement. Cem. Concr. Res. 30 (2000) 1827—1834

  7. El-Didamony, H., El-Alfi, E.S.: Addition of limestone in the low heat Portland cement-Part II., Ceram.- Silik. 44 (2000) [4] 146—150.

  8. Neville, A.M.: Properties of concrete. 5th Ed. Longman, Essex (UK), (2011) ISBN: 978-0-273-75580-7 (pbk.). http://www.pearsoned.co.uk

    Google Scholar 

  9. Hewlett, P.C.: Lea’s Chemistry of Cement, Concrete. 5th Ed., John Wiley & Sons Inc. New York, Toronto (2004), ISBN: 0470 24416 X

    Google Scholar 

  10. El-Alfi, E.S., Darweesh, H.H.M., El-Didamony, H.: Addition of limestone in the low heat Portland cement-Part I., Ceramics Silikáty, 44 (2000) [3], 109—113

  11. Regourd, M.,: Addition of limestone in the low heat Portlant cement. Proc. 8th Int. Congr. Chem. Cem., Rio de Janeiro, 3 (1986) 199—229

  12. Negro, A., Abbiati, G., Cussino L.: Calcium carbonate substitute in cement. Proc. 8th Int. Congr. Chem. Cem. Rio de Janiero, 3 (1986) 109—113

  13. Tsivilis, S., Chaniotakis, E., Kakali, G., Batis, G.: An analysis of the properties of Portland limestone cements, concrete. Cem. Concr. Compo. 24 (2002) 371—378

  14. Vernet, C., Noworyta, G.: Mechanisms of limestone reactions in the system C3A CaSO4. H2O-CH-CaCO3-H): Competition between calcium monocarbo-, monosulfo-aluminate hydrates formation. Proc. 9th Int. Congr. Chem. Cem., 4 New Delhi, India (1992) 430—436

  15. El-Alfi, S., Radwan, A.M., Abed El-Aleem, S.: Effect of limestone fillers, silica fume pozzolana on the characteristics of sulfate resistant cement pastes. Ceram.-Silik. 48 (2004) [1] 29—33

  16. ASTM-Standards C114-77: Standard test method for chemical analysis of hydraulic cement. (1978) 87—127

  17. Hume, W., Madgwick, T., Moon, F., Sadek, H.: Preliminary geologic report on Gabal Tanka area. Petroleum Research Bulletin (Cairo) 4 (1920) 112—119

  18. Youssef, M.I., Abdel Malik, W.M.: Micropaleontological zonation of the Tertiary rocks of the Tayiba-Feiran area, West-Central Sinai, Egypt. Proc. 6th Arab Science Congress, Damascus (1969) 675—684

  19. Abul-Nasr, R.A.A., Thunell, R.C.: Eocene eustatic sea level changes, evidence from western Sinai, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 58 (1987)1—9

  20. Jackson, C.A.-L., Gawthorpe, R.L., Leppard, C.W., Sharp, I.R.: Rift-initiation development of normal fault blocks: insights from the Hammam Faraun fault block Suez Rift, Egypt. J. Geol. Soc. of London 163 (2006) 165—183

  21. Abul Nasr, R.A.: Re-evaluation of the Upper Eocene rock units in West-Central Sinai. MERC Ain Shams University, Earth Science Series 4 (1990) 234—247

  22. Refaat, A.A., Imam, M.M.: The Tayiba Red Beds: Transitional marine-continental deposits in the precursor Suez Rift, Sinai, Egypt. J. African Earth Sci. 26 (1999) [3] 467—506

  23. Jackson, Ch.A.L.: Sedimentology and significance of an early syn-rift paleovalley, Wadi Tayiba, Suez Rift, Egypt. J. African Earth Sci. 52 (2008) 62—68

  24. ASTM-Standards C187-86: Standard test method for normal water of consistency of hydraulic cement. (1993) 148—150

  25. ASTM-Standards, PA, ASTM-C187-98: Standard test method for normal consistency of hydraulic cement. (2002) 163—166

  26. ASTM Designation C191.04-: Standard test method for normal consistency, setting time of hydraulic cement, Annual Book of ASTM Standards (2008) 172—174

  27. ASTM —Standards C191-92: Standard test method for setting time of hydraulic cement. (1993) 866—868

  28. ASTM-Standards, PA, C191-01a: Standard test method for time of setting of hydraulic cement by Vicat needle. (2002) 180—182

  29. ASTM-Standards, C186-92: Determination of the heat of hydration of Portland cement pastes. (1992) 162—164

  30. Krishnaswamy, K.T., Kamasundara, A., Khandekar, A.A.: Concrete Technology, Dhanpat Rai and Sons (1983) 1—11

  31. Kondo, R., Abo-El-Enein, S.A., Diamon, M.: Kinetics, mechanisn of hydrothermal reaction of granulated blast furnace slag. Bull. Chem. Soc. Japan 48 (1975) 222—226

  32. Darweesh, H.H.M.: Effect of combination of Some Pozzolanic Wastes on the Properties of Portlandcement Pastes. iiC l’italiana del Cemento 808 (2005) [4] 298—310

  33. Darweesh, H.H.M., Abo-El-Suoud, M. R.: Quaternary cement composites from industrial byproducts to avoid the environmental pollution. J. EC-Chemistry 2 (2015) [1] 78—91

  34. Darweesh, H.H.M.: Geopolymer cements from slag, fly ash, silica fume activated with sodium hydroxide, water glass. Interceram 66 (2017) [1] 226—231

  35. Darweesh, H.H.M.: Mortar composites based on industrial wastes. Int. J. Mater. Lifetime 3 (2017) [1] 1—8, doi: https://doi.org/10.12691/ijml-3-1-1

  36. Darweesh, H.H.M., Youssef, H.: Preparation of 11 Å Al-substituted Tobermorite from Egyptian Trackyte Rock, its effect on the specific properties of Portland cement. Interceram 63 (2014) [7–8] 358—362

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan H. M. Darweesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darweesh, H.H.M., Abou-El-Anwar, E.A. & Mekky, H.S. Addition of limestone at the expense of gypsum in Portland cement. Interceram. - Int. Ceram. Rev. 67, 18–27 (2018). https://doi.org/10.1007/s42411-018-0030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-018-0030-3

Keywords

Navigation