Skip to main content
Log in

Collision Avoidance Algorithm for a Fixed-Wing UAV Utilizing Geometric Estimation Considering Multiple Dynamic Obstacles

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

Navigating through environments replete with obstacles while adhering to dynamic constraints poses a formidable challenge for fixed-wing Unmanned Aerial Vehicles (UAVs), as they remain vulnerable to collision threats. Moreover, in scenarios involving multiple dynamic obstacles, a quick and reactive maneuver is needed. To address this challenge, this paper introduces a collision avoidance algorithm tailored for fixed-wing UAVs operating within dynamic constraints amidst a multi-obstacle environment. Leveraging a geometric approach with low computational load, this algorithm offers a pragmatic solution for ensuring UAV safety and maneuverability in complex airspace scenarios. The algorithm uses a discrete Kalman filter to predict obstacle trajectories and generates a two-dimensional plane containing the minimum of the obstacle trajectory. A target point for collision avoidance is computed according to the resulting two-dimensional plane considering the movement trajectory of the obstacle and dynamic constraints of the unmanned aerial vehicle. Moreover, the collision times are predicted for scenarios with multiple obstacles. Numerical simulations are performed to demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dalamagkidis K, Valavanis KP, Piegl LA (2012) On integrating unmanned aircraft systems into the National Airspace System. https://doi.org/10.1007/978-94-007-2479-2

  2. Ladd G, Bland G (2009) Non-military applications for small UAS platforms. In: AIAA Infotech@Aerospace conference. https://doi.org/10.2514/6.2009-2046

  3. Jawhar I, Mohamed N, Al-Jaroodi J et al (2017) Communication and networking of UAV-based systems: classification and associated architectures. J Netw Comput Appl 84:93–108. https://doi.org/10.1016/j.jnca.2017.02.008

    Article  Google Scholar 

  4. Mcfadyen A, Mejias L (2016) A survey of autonomous vision-based see and avoid for unmanned aircraft systems. Prog Aerosp Sci 80:1–17. https://doi.org/10.1016/j.paerosci.2015.10.002

    Article  Google Scholar 

  5. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–107. https://doi.org/10.1109/tssc.1968.300136

    Article  Google Scholar 

  6. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271. https://doi.org/10.1007/bf01386390

    Article  MathSciNet  Google Scholar 

  7. Stentz A (1994) Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.1994.351061

  8. Lin Y, Saripalli S (2017) Sampling-based path planning for UAV collision avoidance. IEEE Trans Intell Transp Syst 18:3179–3192. https://doi.org/10.1109/tits.2017.2673778

    Article  Google Scholar 

  9. Jaillet L, Cortes J, Simeon T (2010) Sampling-based path planning on configuration-space costmaps. IEEE Trans Rob 26:635–646. https://doi.org/10.1109/tro.2010.2049527

    Article  Google Scholar 

  10. Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y (2021) Solving constrained trajectory planning problems using biased particle swarm optimization. IEEE Trans Aerosp Electron Syst 57:1685–1701. https://doi.org/10.1109/taes.2021.3050645

    Article  Google Scholar 

  11. Haghighi H, Delahaye D, Asadi D (2022) Performance-based emergency landing trajectory planning applying meta-heuristic and Dubins Paths. Appl Soft Comput 117:108453. https://doi.org/10.1016/j.asoc.2022.108453

    Article  Google Scholar 

  12. Haghighi H, Delahaye D, Moschetta J-M, Asadi D (2024) UAV trajectory optimization for maximum soaring in Windy environment. In: Unmanned systems, pp 1–14. https://doi.org/10.1142/s2301385025500232

  13. Chai R, Tsourdos A, Savvaris A, Xia Y, Chai S (2020) Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network. IEEE Trans Industr Electron 67:6904–6915. https://doi.org/10.1109/tie.2019.2939934

    Article  Google Scholar 

  14. Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y, Chen CL (2020) Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach. IEEE Trans Neural Netw Learn Syst 31:5005–5013. https://doi.org/10.1109/tnnls.2019.2955400

    Article  Google Scholar 

  15. Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y, Chen CL (2021) Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog Aerosp Sci 122:100696. https://doi.org/10.1016/j.paerosci.2021.100696

    Article  Google Scholar 

  16. Chai R, Tsourdos A, Gao H, Xia Y, Chai S (2022) Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances. IEEE Trans Industr Electron 69:4022–4033. https://doi.org/10.1109/tie.2021.3076729

    Article  Google Scholar 

  17. Chai R, Tsourdos A, Gao H, Chai S, Xia Y (2022) Attitude tracking control for reentry vehicles using centralised robust model predictive control. Automatica 145:110561. https://doi.org/10.1016/j.automatica.2022.110561

    Article  MathSciNet  Google Scholar 

  18. Zhu H, Alonso-Mora J (2019) Chance-constrained collision avoidance for MAVs in dynamic environments. IEEE Robot Autom Lett 4:776–783. https://doi.org/10.1109/lra.2019.2893494

    Article  Google Scholar 

  19. Prevost CG, Desbiens A, Gagnon E, Hodouin D (2011) Unmanned aerial vehicle optimal cooperative obstacle avoidance in a stochastic dynamic environment. J Guid Control Dyn 34:29–43. https://doi.org/10.2514/1.50800

    Article  Google Scholar 

  20. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.1985.1087247

  21. Koren Y, Borenstein J (1991) Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings 1991 IEEE international conference on robotics and automation. https://doi.org/10.1109/robot.1991.131810

  22. Sun J, Tang J, Lao S (2017) Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm. IEEE Access 5:18382–18390. https://doi.org/10.1109/access.2017.2746752

    Article  Google Scholar 

  23. Zhang J, Yan J, Zhang P (2018) Fixed-wing UAV formation control design with collision avoidance based on an improved artificial potential field. IEEE Access 6:78342–78351. https://doi.org/10.1109/access.2018.2885003

    Article  Google Scholar 

  24. Santos MC, Rosales CD, Sarcinelli-Filho M, Carelli R (2017) A novel null-space-based UAV trajectory tracking controller with collision avoidance. IEEE/ASME Trans Mechatron 22:2543–2553. https://doi.org/10.1109/tmech.2017.2752302

    Article  Google Scholar 

  25. Shin H, Tsourdos A, White B (2012) UAS conflict detection and resolution using differential geometry concepts. In: Sense and avoid in UAS, pp 175–204. https://doi.org/10.1002/9781119964049.ch7

  26. Bilimoria K (2000) A geometric optimization approach to aircraft conflict resolution. In: 18th applied aerodynamics conference. https://doi.org/10.2514/6.2000-4265

  27. Chakravarthy A, Ghose D (1998) Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans Syst Man Cybern Part A Syst Hum 28:562–574. https://doi.org/10.1109/3468.709600

    Article  Google Scholar 

  28. Chakravarthy A, Ghose D (2012) Generalization of the collision cone approach for motion safety in 3-D environments. Auton Robot 32:243–266. https://doi.org/10.1007/s10514-011-9270-z

    Article  Google Scholar 

  29. Choi H, Kim Y, Hwang I (2013) Reactive collision avoidance of unmanned aerial vehicles using a single vision sensor. J Guid Control Dyn 36:1234–1240. https://doi.org/10.2514/1.57131

    Article  Google Scholar 

  30. Seo J, Kim Y, Kim S, Tsourdos A (2017) Collision avoidance strategies for unmanned aerial vehicles in formation flight. IEEE Trans Aerosp Electron Syst 53:2718–2734. https://doi.org/10.1109/taes.2017.2714898

    Article  Google Scholar 

  31. Schmitt L, Fichter W (2014) Collision-avoidance framework for small fixed-wing unmanned aerial vehicles. J Guid Control Dyn 37:1323–1329. https://doi.org/10.2514/1.g000226

    Article  Google Scholar 

  32. Park J, Cho N (2020) Collision avoidance of Hexacopter UAV based on LIDAR data in dynamic environment. Remote Sensing 12:975. https://doi.org/10.3390/rs12060975

    Article  Google Scholar 

  33. Park J, Cho N, Lee S (2020) Reactive collision avoidance algorithm for UAV using bounding tube against multiple moving obstacles. IEEE Access 8:218131–218144. https://doi.org/10.1109/access.2020.3042258

    Article  Google Scholar 

  34. Jenie YI, Van Kampen E-J, de Visser CC et al (2015) Three-dimensional velocity obstacle method for UAV deconflicting maneuvers. AIAA Guid Navig Control Conf. https://doi.org/10.2514/6.2015-0592

    Article  Google Scholar 

  35. Omar R, Gu D (2010) 3D path planning for unmanned aerial vehicles using visibility line based method. In: Proceedings of the 7th international conference on informatics in control, automation and robotics. https://doi.org/10.5220/0002881100800085

  36. Huang S, Teo RS (2019) Computationally efficient visibility graph-based generation of 3D shortest collision-free path among polyhedral obstacles for unmanned aerial vehicles. In: 2019 international conference on unmanned aircraft systems (ICUAS). https://doi.org/10.1109/icuas.2019.8798322

  37. Mujumdar A, Padhi R (2011) Reactive collision avoidance of using nonlinear geometric and differential geometric guidance. J Guid Control Dyn 34:303–311. https://doi.org/10.2514/1.50923

    Article  Google Scholar 

  38. Watanabe Y, Calise A, Johnson E et al (2006) Minimum-effort guidance for vision-based collision avoidance. In: AIAA atmospheric flight mechanics conference and exhibit. https://doi.org/10.2514/6.2006-6641

  39. Park J, Kim Y (2015) Collision avoidance for quadrotor using stereo vision depth maps. IEEE Trans Aerosp Electron Syst 51:3226–3241. https://doi.org/10.1109/taes.2015.140222

    Article  Google Scholar 

  40. Beard RW, McLain TW (2012) Small unmanned aircraft theory and practice, design model for guidance, 9th edn. Princeton Univ. Press, New York, pp 164–173

    Google Scholar 

  41. Yasin JN, Mohamed SA, Haghbayan M-H et al (2020) Unmanned aerial vehicles (UAVs): collision avoidance systems and approaches. IEEE Access 8:105139–105155. https://doi.org/10.1109/access.2020.3000064

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2021R1G1A1003429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongho Park.

Additional information

Communicated by Byoung-Mun Min.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Park, J. Collision Avoidance Algorithm for a Fixed-Wing UAV Utilizing Geometric Estimation Considering Multiple Dynamic Obstacles. Int. J. Aeronaut. Space Sci. (2024). https://doi.org/10.1007/s42405-024-00741-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42405-024-00741-5

Keywords

Navigation