Skip to main content
Log in

Nonlinear Active Disturbance Rejection Controller Design for Drag-Free Satellite with Two Test Massess

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

Space gravitational wave detection missions require low bandwidth, high accuracy and strong robustness for the drag-free satellite systems, which require laser interference experiments with dual test masses (TMs) inside the satellite. For drag-free control and electrostatic levitation control with dual TMs satellites, linear controllers are difficult to solve the comprehensive problems of high accuracy and stability. In this paper, fractional order active disturbance rejection control (FOADRC) is used as the drag-free controller and electrostatic levitation controller, in which the non-linear controller controls the drag-free system and the active disturbance rejection compensates the system with feedback, achieving the objectives of frequency division control and interference suppression for the drag-free control and electrostatic levitation control. The simulation results show that the relative displacement of the satellite and the test mass (TM) is less than \(1 \times 10^{ - 9}\,{\mathrm{m\,Hz}}^{ - 1/2}\) and the residual acceleration is less than \(1 \times 10^{ - 15}\,{\mathrm{m\,s}}^{ - 2}\,{\mathrm{Hz}}^{ - 1/2}\) in the sensitive band of 0.1 mHz–1 Hz gravitational wave detection. The designed controller scheme ensures the system robustness and control accuracy under the ultra-low bandwidth constraint and improves the system-response performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abbott BP, Abbott R, Abbott TD et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(6):061102. https://doi.org/10.1103/PhysRevLett.116.061102

    Article  MathSciNet  Google Scholar 

  2. Hu Y, Zhang L, Gao Y et al (2022) Analysis of key technologies of spacecraft for gravitational waves detection in space. Spacecraft Eng 31(4):7. https://doi.org/10.3969/j.issn.1673-8748.2022.04.001

    Article  Google Scholar 

  3. Wu S, Zhang Q, Liu M, et al. Key Technologies and progress of inertial sensors for space gravitational wave detection. Chin Space Sci Technol. http://kns.cnki.net/kcms/detail/11.1859.V.20221028.1701.002.html

  4. Cai RG, Cao Z, Guo ZK et al (2017) The gravitational-wave physics. Natl Sci Rev 4(5):687–706. https://doi.org/10.1093/nsr/nwx029

    Article  Google Scholar 

  5. Castelli E (2020) LISA Pathfinder noise performance results: disturbances in the sub-mHz frequency band and projection to LISA. https://doi.org/10.15168/11572_254388

  6. Fichter W, Gath P, Vitale S et al (2005) LISA pathfinder drag-free control and system implications. Class Quantum Gravity 22(10):S139. https://doi.org/10.1088/0264-9381/22/10/002

    Article  Google Scholar 

  7. Shi L, Cao X, Zhang J et al (2010) Survey of drag-free satellite. J Astron 31(06):1511–1520. https://doi.org/10.3873/j.issn.1000-1328.2010.06.001

    Article  Google Scholar 

  8. Weber WJ, Cavalleri A, Dolesi R et al (2002) Position sensors for LISA drag-free control. Class Quantum Gravity 19(7):1751. https://doi.org/10.1088/0264-9381/19/7/371

    Article  Google Scholar 

  9. Lange B (2011) The drag-free satellite. AIAA J 2(9):1590–1606. https://doi.org/10.2514/3.55086

    Article  Google Scholar 

  10. Lange BO (1964) The control and use of drag-free satellites. Stanford University, Stanford

    Google Scholar 

  11. Maghami PG, Hyde TT (2003) Laser interferometer space antenna dynamics and controls model. Class Quantum Gravity 20(10):S273. https://doi.org/10.1088/0264-9381/20/10/330

    Article  Google Scholar 

  12. Grynagier A, Fichter W, Vitale S (2009) The LISA Pathfinder drift mode: implementation solutions for a robust algorithm. Class Quantum Gravity 26(9):094007. https://doi.org/10.1088/0264-9381/26/9/094007

    Article  Google Scholar 

  13. Pettazzi L, Lanzon A, Theil S et al (2009) Design of robust drag-free controllers with given structure. J Guid Control Dyn 32(5):1609–1621. https://doi.org/10.2514/1.40279

    Article  Google Scholar 

  14. Canuto E (2008) Drag-free and attitude control for the GOCE satellite. Automatica 44(7):1766–1780. https://doi.org/10.1016/j.automatica.2007.11.023

    Article  MathSciNet  Google Scholar 

  15. Canuto E, Bona B, Calafiore G et al (2002) Drag free control for the European satellite GOCE. Part II: digital control. In: Proceedings of the 41st IEEE conference on decision and control, vol 4. IEEE, pp 4072–4077. https://doi.org/10.1109/CDC.2002.1185004

  16. Canuto E, Massotti L (2009) All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronaut 64(2–3):325–344. https://doi.org/10.1016/j.actaastro.2008.07.017

    Article  Google Scholar 

  17. Canuto E, Massotti L (2010) Local orbital frame predictor for LEO drag-free satellite. Acta Astronaut 66(3–4):446–454. https://doi.org/10.1016/j.actaastro.2009.06.016

    Article  Google Scholar 

  18. Ziegler T, Fichter W (2007) Test mass stiffness estimation for the LISA pathfinder drag-free system. In: AIAA guidance, navigation and control conference and exhibit, p 6669. https://doi.org/10.2514/6.2007-6669

  19. Fichter W, Schleicher A, Bennani S et al (2007) Closed loop performance and limitations of the LISA Pathfinder drag-free control system. In: AIAA guidance, navigation and control conference and exhibit, p 6732. https://doi.org/10.2514/6.2007-6732

  20. Wu SF, Fertin D (2008) Spacecraft drag-free attitude control system design with quantitative feedback theory. Acta Astronaut 62(12):668–682. https://doi.org/10.1016/j.actaastro.2008.01.038

    Article  Google Scholar 

  21. Wang E, Zhang J, Li H et al (2021) Relative position model predictive control of double cube test-masses drag-free satellite with extended sliding mode observer. Math Probl Eng 2021:1–15. https://doi.org/10.1155/2021/8887479

    Article  MathSciNet  Google Scholar 

  22. Zhang J, Dong X, Cao X (2014) An adaptive controller for drag-free satellites without velocity measurement. J Astron 35(04):447–453. https://doi.org/10.3873/j.issn.1000-1328.2014.04.011

    Article  Google Scholar 

  23. Yang F, Tan S, Xue W et al (2020) Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Autom Sin 46(11):2337–2349. https://doi.org/10.16383/j.aas.c190515

    Article  Google Scholar 

  24. Lian X, Zhang J, Lu L et al (2021) Frequency separation control for drag-free satellite with frequency-domain constraints. IEEE Trans Aerosp Electron Syst 57(6):4085–4096. https://doi.org/10.1109/TAES.2021.3088456

    Article  Google Scholar 

  25. Ma H, Han P, Gao D et al (2021) H∞ robust controller design for deep space drag-free satellite with two test masses. J Harb Inst Technol 53(02):1–13. https://doi.org/10.11918/202006038

    Article  Google Scholar 

  26. Giulicchi L, Wu SF, Fenal T (2013) Attitude and orbit control systems for the LISA Pathfinder mission. Aerosp Sci Technol 24(1):283–294. https://doi.org/10.1016/j.ast.2011.12.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (NNSF) of China under Grant (Grant No. 12162007), National Key R&D Program of China Key Project of Gravitational Wave Detection in 2020 (Grant No. 2020YFC2201000), and the Research on New Power System and Its Digital Engineering [grant number QianJiaoJi, China (2022) 043].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.S., J.Z., Y.G. and A.P.; data curation, Y.S. and J.Z.; funding acquisition, A.P.; investigation, J.Z. and Y.S.; methodology, Y.S., A.P., Y.G. and J.Z.; resources, A.P.; validation, Y.S., J.Z.; visualization, J.Z.; writing—original draft, Y.S., J.Z.; writing—review and editing, A.P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Aiping Pang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Donghun Lee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Pang, A., Zhou, J. et al. Nonlinear Active Disturbance Rejection Controller Design for Drag-Free Satellite with Two Test Massess. Int. J. Aeronaut. Space Sci. (2024). https://doi.org/10.1007/s42405-024-00739-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42405-024-00739-z

Keywords

Navigation