Skip to main content

Estimation of Effective Mechanical Properties of Plain Woven Composites Using Direction-Selective Micromechanical Models

Abstract

The directional elastic properties of composite yarn calculated by micromechanical models depend on the type of the models directionally adopted, and which significantly impacts the estimation of effective mechanical properties of woven composites composed of yarns and matrix (resin). This study proposed a methodology to predict the effective mechanical properties of a plain woven composite with lower errors by adopting direction-selective micromechanical models for composite yarns. We found that most of the effective mechanical properties of the plain woven composite are improved. Moreover, the elastic moduli in the warp and fill directions, which critically affect the mechanical behavior of composite structures, are particularly consistent with the experimental data, and exhibit relative errors of 0.18% and 1.93%, respectively. These errors are 95.6% and 16.8% lower than those presented by previous researchers. These findings indicate that the proposed methodology can successfully predict the effective mechanical properties of plain woven composites and contribute to the accurate and efficient analysis of their structural behaviors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Huang X, Gillespie JW, Bogetti TA (2000) Process-induced stress for woven fabric thick section composite structures. Compos Struct 49:303–312. https://doi.org/10.1016/S0263-8223(00)00062-3

    Article  Google Scholar 

  2. Qiao K, Xu X (2022) Parallel multiscale numerical framework of the non-linear failure analysis for three-dimension composite structures. Int J Aeronaut Space Sci 23:77–91. https://doi.org/10.1007/s42405-021-00430-7

    Article  Google Scholar 

  3. Kim DH, Kim SW (2019) Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis. Compos Struct 210:676–686. https://doi.org/10.1016/j.compstruct.2018.11.086

    Article  Google Scholar 

  4. Kim H, Park J (2021) Improved modeling method for 3-dimensional woven composites using weaving parameters. Int J Aeronaut Space Sci 22:824–833. https://doi.org/10.1007/s42405-021-00365-z

    Article  Google Scholar 

  5. Lee SK, Byun JH, Hong SH (2003) Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites. Mater Sci Eng A 347:346–358. https://doi.org/10.1016/S0921-5093(02)00614-7

    Article  Google Scholar 

  6. Kim M, Park J (2021) Stiffness prediction of triaxial braided composites accounting for manufacturing parameters. Int J Aeronaut Space Sci 22:602–612. https://doi.org/10.1007/s42405-021-00379-7

    Article  Google Scholar 

  7. Geleta TN, Woo K, Lee B (2017) Prediction of effective material properties for triaxially braided textile composite. Int J Aeronaut Space Sci 18:222–235. https://doi.org/10.5139/IJASS.2017.18.2.222

    Article  Google Scholar 

  8. Ishikawa T, Chou TW (1982) Elastic behavior of woven hybrid composites. J Compos Mater 16:2–19. https://doi.org/10.1177/002199838201600101

    Article  Google Scholar 

  9. Vandeurzen P, Ivens J, Verpoest I (1996) A three-dimensional micromechanical analysis of woven-fabric composites: II. Elastic analysis. Compos Sci Technol 56:1317–1327. https://doi.org/10.1016/S0266-3538(96)00091-7

    Article  Google Scholar 

  10. Goda I, Ganghoffer J (2016) Construction of first and second order grade anisotropic continuum media for 3D porous and textile composite structures. Compos Struct 141:292–327. https://doi.org/10.1016/j.compstruct.2016.01.061

    Article  Google Scholar 

  11. Rahali Y, Goda I, Ganghoffer JF (2016) Numerical identification of classical and nonclassical moduli of 3D woven textiles and analysis of scale effects. Compos Struct 135:122–139. https://doi.org/10.1016/j.compstruct.2015.09.023

    Article  Google Scholar 

  12. Nicoletto G, Riva E (2004) Failure mechanisms in twill-weave laminates: FEM predictions vs. experiments. Compos Part A Appl Sci Manuf 35:787–795. https://doi.org/10.1016/j.compositesa.2004.01.007

    Article  Google Scholar 

  13. Kim YK, White SR (1997) Viscoelastic analysis of processing-induced residual stresses in thick composite laminates. Mech Compos Mater Struct 4:361–387. https://doi.org/10.1080/10759419708945889

    Article  Google Scholar 

  14. Kim DH, Kim SW, Lee I (2022) Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters. Compos Struct 287:115379. https://doi.org/10.1016/j.compstruct.2022.115379

    Article  Google Scholar 

  15. Hui Y, Xu R, Giunta G, De Pietro G, Hu H, Belouettar S, Carrera E (2019) Multiscale CUF-FE2 nonlinear analysis of composite beam structures. Comput Struct 221:28–43. https://doi.org/10.1016/j.compstruc.2019.05.013

    Article  Google Scholar 

  16. Geers MGD, Kouznetsova VG, Matouš K, Yvonnet J (2017) Homogenization methods and multiscale modeling: nonlinear problems. encyclopedia of computational mechanics, 2nd edn. Wiley, New York, pp 1–34

    Google Scholar 

  17. Liang B, Zhang W, Fenner JS, Gao J, Shi Y, Zeng D, Su X, Liu WK, Cao J (2019) Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation. Compos A Appl Sci Manuf 124:105460. https://doi.org/10.1016/j.compositesa.2019.05.028

    Article  Google Scholar 

  18. Sabuncuoglu B, Orlova S, Gorbatikh L, Lomov SV, Verpoest I (2015) Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading. J Compos Mater 49:1057–1069. https://doi.org/10.1177/0021998314528826

    Article  Google Scholar 

  19. Byun JH (2000) The analytical characterization of 2-D braided textile composites. Compos Sci Technol 60:705–716. https://doi.org/10.1016/S0266-3538(99)00173-6

    Article  Google Scholar 

  20. Jones RM (1999) Mechanics of composite materials. Taylor & Francis, Abingdon

    Google Scholar 

  21. Voigt W (1889) The relation between the two elastic moduli of isotropic materials. Ann Phys 38:573–587

    Article  Google Scholar 

  22. Reuss A (1929) Calculation of the yield point of mixed crystals. Math Mech 9:55

    Google Scholar 

  23. Lamers EAD (1999) Review on micromechanical modelling. Technical Report for the Department of Mechanical Engineering, Precimould (BE 97–4351), University of Twente

  24. Chamis CC (1983) Simplified composite micromechanics equations for hygral, thermal and mechanical properties. NASA Technical Memorandum 83320, Reinforced Plastics Composites Institute, Houston, Texas

  25. Halpin JC (1969) Effects of environmental factors on composite materials. Report, Air Force Materials Lab, Wright-Patterson

  26. Ashton JE, Halpin JC, Petit PH (1969) Primer on composite materials: analysis. Technomic Pub. Co. Stamford, Conn

    Google Scholar 

  27. Kardos JL (1973) Structure property relations in short-fiber reinforced plastics. Crit Rev Solid State Mater Sci 3:419–450. https://doi.org/10.1080/10408437308244870

    Article  Google Scholar 

  28. Hewitt RL, de Malherbe MC (1970) An approximation for the longitudinal shear modulus of continuous fibre composites. J Compos Mater 4:280–282

    Article  Google Scholar 

  29. Bogetti TA, Gillespie JW (1992) Process-induced stress and deformation in thick-section thermoset composite laminates. J Compos Mater 26:626–660. https://doi.org/10.1177/002199839202600502

    Article  Google Scholar 

  30. Hill RA (1965) Self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222. https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  31. Chow TS, Hermans JJ (1969) The elastic constants of fiber reinforced materials. J Compos Mater 3:382–396. https://doi.org/10.1177/002199836900300302

    Article  Google Scholar 

  32. Hill R (1965) Theory of mechanical properties of fibre-strengthened materials—III. Self–consistent model. J Mech Phys Solids 13:189–198. https://doi.org/10.1016/0022-5096(65)90008-6

    Article  Google Scholar 

  33. Hermans JJ (1967) The elastic properties of fiber reinforced materials when the fibers are aligned. Proc K Ned Wet B 70:1–9

    Google Scholar 

  34. Whitney JM (1967) Elastic moduli of unidirectional composites with anisotropic filaments. J Compos Mater 1:188–193. https://doi.org/10.1177/002199836700100208

    Article  Google Scholar 

  35. Gibson R (2016) Principles of composite material mechanics, 4th edn. McGraw-Hill Inc, New York

    Book  Google Scholar 

  36. Dai X, Wang Y, Tang C, Guo X (2016) Mechanics analysis on the composite flywheel stacked from circular twill woven fabric rings. Compos Struct 155:19–28. https://doi.org/10.1016/j.compstruct.2016.07.061

    Article  Google Scholar 

  37. Kreger AF, Teters GA (1980) Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Mech Compos Mater 15:377–383. https://doi.org/10.1007/BF00605861

    Article  Google Scholar 

  38. Wang W, Dai Y, Zhang C, Gao X, Zhao M (2016) Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution. Materials 9:624. https://doi.org/10.3390/ma9080624

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NO. 2019R1A2C4070280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Woo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Kim, SW. Estimation of Effective Mechanical Properties of Plain Woven Composites Using Direction-Selective Micromechanical Models. Int. J. Aeronaut. Space Sci. (2022). https://doi.org/10.1007/s42405-022-00459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42405-022-00459-2

Keywords

  • Plain woven composite
  • Composite yarn
  • Mechanical properties
  • Micro-mechanics
  • Volume averaging