Skip to main content

A Novel Fixed-Time Convergence Three-Dimensional Guidance Law for Intercepting Highly Maneuvering Targets

Abstract

In this paper, a novel three-dimensional fixed-time convergence guidance law for intercepting highly maneuvering targets is proposed. It comprehensively considers the impact angle constraint, guidance command input saturation constraint, and autopilot second-order dynamics. The guidance law is firstly designed based on a novel fixed-time convergent sliding mode surface proposed in this paper. Then, a backstepping control method is adopted for consideration of autopilot second-order dynamics. By constructing an adaptive auxiliary system, the problem of guidance command input saturation is solved. Additionally, the fixed-time convergence disturbance observer is used to estimate the guidance system disturbance. Using the Lyapunov theory, the stability and fixed-time convergence of the proposed guidance law are proved and analyzed. Finally, the simulation comparison of four different guidance laws shows the excellent guidance performance of the proposed guidance law.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jung YS, Lee JI, Lee CH, Tahk MJ (2019) A new collision control guidance law based on speed control for kill vehicles. Int J Aeronaut Space Sci 20(3):792–805. https://doi.org/10.1007/s42405-019-00147-8

    Article  Google Scholar 

  2. An JY, Lee CH, Tahk MJ (2019) A collision geometry-based guidance law for course-correction-projectile. Int J Aeronaut Space Sci 20(2):442–458. https://doi.org/10.1007/s42405-018-0114-3

    Article  Google Scholar 

  3. Zhao FJ, You H (2020) New three-dimensional second-order sliding mode guidance law with impact-angle constraints. Aeronaut J 124(1273):368–384. https://doi.org/10.1017/aer.2019.130

    Article  Google Scholar 

  4. Kim BS, Lee JG, Han HS (1998) Biased PNG law for impact with angular constraint. IEEE Trans Aerosp Electron Syst 34(1):277–288. https://doi.org/10.1109/7.640285

    Article  Google Scholar 

  5. Park BG, Kim TH, Tahk MJ (2017) Biased PNG with terminal-angle constraint for intercepting nonmaneuvering targets under physical constraints. IEEE Trans Aerosp Electron Syst 53(3):1562–1572. https://doi.org/10.1109/Taes.2017.2667518

    Article  Google Scholar 

  6. Lin DF, Ji Y, Wang W, Wang YC, Wang H, Zhang FB (2020) Three-dimensional impact angle-constrained adaptive guidance law considering autopilot lag and input saturation. Int J Robust Nonlinear Control 30(9):3653–3671. https://doi.org/10.1002/rnc.4955

    MathSciNet  Article  MATH  Google Scholar 

  7. Yang CD, Chen HY (1998) Nonlinear H(infinity) robust guidance law for homing missiles. J Guid Control Dyn 21(6):882–890. https://doi.org/10.2514/2.4321

    Article  Google Scholar 

  8. Hong SM, Tahk MJ, Lee CH (2020) Stage optimization of anti-air missiles using practical guidance laws. Int J Aeronaut Space Sci 21(2):394–403. https://doi.org/10.1007/s42405-019-00224-y

    Article  Google Scholar 

  9. Han S, Bai JH, Hong SM et al (2017) Guidance law for agile turn of air-to-air missile during boost phase. Int J Aeronaut Space Sci 18(4):709–718. https://doi.org/10.5139/Ijass.2017.18.4.709

    Article  Google Scholar 

  10. Rout R, Cui RX, Han ZQ (2020) Modified line-of-sight guidance law with adaptive neural network control of underactuated marine vehicles with state and input constraints. IEEE Trans Control Syst Technol 28(5):1902–1914. https://doi.org/10.1109/Tcst.2020.2998798

    Article  Google Scholar 

  11. Kim HG, Cho D, Kim HJ (2019) Sliding mode guidance law for impact time control without explicit time-to-go estimation. IEEE Trans Aerosp Electron Syst 55(1):236–250. https://doi.org/10.1109/Taes.2018.2850208

    Article  Google Scholar 

  12. Kumar SR, Mukherjee D (2019) Deviated pursuit based interception at a priori fixed time. J Guid Control Dyn 42(9):2124–2131. https://doi.org/10.2514/1.G004284

    Article  Google Scholar 

  13. Hu QL, Han T, Xin M (2019) Sliding-mode impact time guidance law design for various target motions. J Guid Control Dyn 42(1):136–148. https://doi.org/10.2514/1.G003620

    Article  Google Scholar 

  14. Kumar SR, Mukherjee D (2020) Cooperative salvo guidance using finite-time consensus over directed cycles. IEEE Trans Aerosp Electron Syst 56(2):1504–1514. https://doi.org/10.1109/Taes.2019.2934675

    Article  Google Scholar 

  15. Guo JG, Peng Q, Guo ZY (2021) SMC-based integrated guidance and control for beam riding missiles with limited LBPU. IEEE Trans Aerosp Electron Syst 57(5):2969–2978. https://doi.org/10.1109/Taes.2021.3069035

    Article  Google Scholar 

  16. Wang CY, Dong W, Wang JA, Xin M (2021) Impact-angle-constrained cooperative guidance for salvo attack. J Guid Control Dyn doi 10(2514/1):G006342

    Google Scholar 

  17. Dong W, Wang C, Wang J, Zuo Z, Shan J (2021) Fixed-time terminal angle constrained cooperative guidance law against maneuvering target. IEEE Trans Aerosp Electron Syst:1–15. https://doi.org/10.1109/TAES.2021.3113292

  18. Meng KZ, Zhou D (2018) Super-twisting integral-sliding-mode guidance law considering autopilot dynamics. P I Mech Eng G-J Aer 232(9):1787–1799. https://doi.org/10.1177/0954410017703413

    Article  Google Scholar 

  19. Ji Y, Lin DF, Wang W, Lin SY (2017) Finite-time convergent guidance law based on second-order sliding mode control theory. Int J Aeronaut Space Sci 18(4):697–708. https://doi.org/10.5139/Ijass.2017.18.4.697

    Article  Google Scholar 

  20. Zhang XJ, Liu MY, Li Y (2019) Nonsingular terminal sliding-mode-based guidance law design with impact angle constraints. Ijst-T Electr Eng 43(1):47–54. https://doi.org/10.1007/s40998-018-0097-x

    Article  Google Scholar 

  21. Sun S, Zhou D, Hou WT (2013) A guidance law with finite time convergence accounting for autopilot lag. Aerosp Sci Technol 25(1):132–137. https://doi.org/10.1016/j.ast.2011.12.016

    Article  Google Scholar 

  22. Song JH, Song SM (2016) Three-dimensional guidance law based on adaptive integral sliding mode control. Chin J Aeronaut 29(1):202–214. https://doi.org/10.1016/j.cja.2015.12.012

    Article  Google Scholar 

  23. Man CY, Liu RJ, Li SH (2019) Three-dimensional suboptimal guidance law based on theta - D technique and nonlinear disturbance observer. P I Mech Eng G-J Aer 233(14):5122–5133. https://doi.org/10.1177/0954410019837123

    Article  Google Scholar 

  24. Duan MJ, Zhou D, Cheng DL (2019) Extended state observer-based finite-time guidance laws on account of thruster dynamics. P I Mech Eng G-J Aer 233(12):4583–4597. https://doi.org/10.1177/0954410019827175

    Article  Google Scholar 

  25. He SM, Lin DF, Wang J (2016) Homogenous observer-based second-order sliding mode guidance law. T Jpn Soc Aeronaut S 59(2):91–99. https://doi.org/10.2322/tjsass.59.91

    Article  Google Scholar 

  26. Ma MC, Tan LG, Song SM (2021) Three-dimensional sliding mode guidance law for maneuvering target with prescribed performance and input saturation. Trans Inst Meas Control 43(5):1176–1190. https://doi.org/10.1177/0142331220972021

    Article  Google Scholar 

  27. He SM, Wang W, Wang J (2016) Three-dimensional impact angle guidance laws based on model predictive control and sliding mode disturbance observer. J Dyn Syst Meas Contr 138(8):1–8. https://doi.org/10.1115/1.4033272

    Article  Google Scholar 

  28. Yan XH, Zhu JH, Kuang MC, Yuan XM (2020) A computational-geometry-based 3-dimensional guidance law to control impact time and angle. Aerosp Sci Technol 98:1–12. https://doi.org/10.1016/j.ast.2019.105672

    Article  Google Scholar 

  29. Zhang WJ, Xia QL, Li W (2020) Novel second-order sliding mode guidance law with an impact angle constraint that considers autopilot lag for intercepting manoeuvering targets. Aeronaut J 124(1279):1350–1370. https://doi.org/10.1017/aer.2020.28

    Article  Google Scholar 

  30. Sun L, Wang W, Yi R, Xiong S (2016) A novel guidance law using fast terminal sliding mode control with impact angle constraints. ISA Trans 64:12–23. https://doi.org/10.1016/j.isatra.2016.05.004

    Article  Google Scholar 

  31. Aouiti C, Hui Q, Jallouli H, Moulay E (2021) Sliding mode control-based fixed-time stabilization and synchronization of inertial neural networks with time-varying delays. Neural Comput Appl 33(18):11555–11572. https://doi.org/10.1007/s00521-021-05833-x

    Article  Google Scholar 

  32. Wu CH, Yan JG, Lin H, Wu XW, Xiao B (2021) Fixed-time disturbance observer-based chattering-free sliding mode attitude tracking control of aircraft with sensor noises. Aerosp Sci Technol 111:1–10. https://doi.org/10.1016/j.ast.2021.106565

    Article  Google Scholar 

  33. Wang X, Guo J, Tang SJ, Qi S (2019) Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA Trans 88:233–245. https://doi.org/10.1016/j.isatra.2018.12.013

    Article  Google Scholar 

  34. Wu R, Wei CZ, Yang F, Cui NG, Zhang L (2018) FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems. IET Control Theory Appl 12(18):2459–2467. https://doi.org/10.1049/iet-cta.2018.5455

    Article  Google Scholar 

  35. Zhang WJ, Fu SN, Li W, Xia QL (2020) An impact angle constraint integral sliding mode guidance law for maneuvering targets interception. J Syst Eng Electron 31(1):168–184. https://doi.org/10.21629/Jsee.2020.01.17

  36. Kumar SR, Ghose D (2017) Three-dimensional impact angle guidance with coupled engagement dynamics. J Aerosp Eng 231(4):621–641. https://doi.org/10.1177/0954410016641442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Zhang, K. A Novel Fixed-Time Convergence Three-Dimensional Guidance Law for Intercepting Highly Maneuvering Targets. Int. J. Aeronaut. Space Sci. (2022). https://doi.org/10.1007/s42405-022-00458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42405-022-00458-3

Keywords

  • Guidance law
  • Fixed-time convergence
  • Backstepping control
  • Maneuvering target