Skip to main content

Surrogate Model Considering Trim Condition for Design Optimization of High-Aspect-Ratio Flexible Wing

Abstract

An improved, bilevel surrogate model to optimize aerodynamic/nonlinear structural coupled problems, considering trim conditions, is proposed in this paper. The proposed model is applied to a high-aspect-ratio flexible wing. Computational fluid and structural dynamic codes are loosely coupled and interact with the coupling variables of pressure and displacement. Level 1 reduces the coupling variables, using proper orthogonal decomposition, enabling the expansion of any data field as a linear combination of several modes. Level 2 builds the surrogate model, considering proper orthogonal displacement coefficients and the angle of attack as input parameters and the pressure coefficients as output parameters. Unlike the conventional bilevel surrogate model, the improved bilevel surrogate model includes the angle of attack as an input parameter to facilitate the immediate calculation of the trim angle of attack. The wing model of Global Hawk is optimized using the improved bilevel surrogate model, and the conventional bilevel surrogate model was used to compare the results of design optimization under two conditions: including and excluding the trim condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Agostino De M, Eugene D, Jon B (2007) A general solution to the aircraft trim problem. In: AIAA modeling and simulation technologies conference and exhibit (p. 6703). https://doi.org/10.2514/6.2007-6703

  2. Alessandro Giassi F, Bennis J-J. Maisonneuve (2004) Multidisciplinary design optimisation and robust design approaches applied to concurrent design. Struct Multidiscip Optim 28(5):356–371. https://doi.org/10.1007/s00158-004-0417-9

    Article  Google Scholar 

  3. Anindya C (2000) An introduction to the proper orthogonal decomposition. Curr Sci 808–817

  4. Jameson A (1983) Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Appl Math Comput 13(3–4):327–355

    MathSciNet  MATH  Google Scholar 

  5. Kim B-K, Jun S-O, Jeon Y-H, Kim J-H, Lee D-H (2007) Efficiency of dynamic mesh in static aeroelastic analysis and design optimization problem. J Korean Soc Aeronaut Space Sci 35(2):87–93. https://doi.org/10.5139/JKSAS.2007.35.2.087

    Article  Google Scholar 

  6. Huixue D, Yang Z, Li Yi (2010) Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelasticity analysis. Aerosp Sci Technol 14(4):250–258. https://doi.org/10.1016/j.ast.2010.01.004

    Article  Google Scholar 

  7. Kim E, Kim H-g, Baek S, Cho M (2014) Effective structural optimization based on equivalent static loads combined with system reduction method. Struct Multidiscip Optim 50(5):775–786. https://doi.org/10.1007/s00158-014-1080-4

    Article  Google Scholar 

  8. Kim E, Cho M (2018) Design of a planar multibody dynamic system with ANCF beam elements based on an element-wise stiffness evaluation procedure. Struct Multidiscip Optim 58(3):1095–1107. https://doi.org/10.1007/s00158-018-1954-y

    MathSciNet  Article  Google Scholar 

  9. Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776. https://doi.org/10.1137/0804044

    MathSciNet  Article  MATH  Google Scholar 

  10. Kerschen G, Golinval J-C (2002) Physical interpretation of the proper orthogonal modes using the singular value decomposition. J Sound Vib 249(5):849–865. https://doi.org/10.1006/jsvi.2001.3930

    MathSciNet  Article  MATH  Google Scholar 

  11. Lui HFS, Wolf WR (2019) Construction of reduced-order models for fluid flows using deep feedforward neural networks. J Fluid Mech 872:963–994. https://doi.org/10.1017/jfm.2019.358

    MathSciNet  Article  MATH  Google Scholar 

  12. Blazek J, Kroll N, Radespiel R, Rossow C-C (1991) Upwind implicit residual smoothing method for multi-stage schemes. In: 10th Computational Fluid Dynamics Conference (p 1533). https://doi.org/10.2514/6.1991-1533

  13. Lee J, Cho M (2018) Efficient design optimization strategy for structural dynamic systems using a reduced basis method combined with an equivalent static load. Struct Multidiscip Optim 58(4):1489–1504. https://doi.org/10.1007/s00158-018-1976-5

    MathSciNet  Article  Google Scholar 

  14. Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim 14(1):1–23. https://doi.org/10.1007/BF01197554

    Article  Google Scholar 

  15. Batina JT (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28(8):1381–1388. https://doi.org/10.2514/3.25229

    Article  Google Scholar 

  16. Park KH, Jun SO, Baek SM, Cho MH, Yee KJ, Lee DH (2013) Reduced-order model with an artificial neural network for aerostructural design optimization. J Aircraft 50(4):1106–1116. https://doi.org/10.2514/1.C032062

    Article  Google Scholar 

  17. Manoj B et al (1997) A CFD/CSD interaction methodology for aircraft wings. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (p. 4783). https://doi.org/10.2514/6.1998-4783

  18. Meckesheimer M et al (2002) Computationally inexpensive metamodel assessment strategies. AIAA J 40(10):2053–2060. https://doi.org/10.2514/2.1538

    Article  Google Scholar 

  19. Patil MJ, Hodges DH, Cesnik CES (2001) Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J Aircraft 38(1):88–94. https://doi.org/10.2514/2.2738

    Article  Google Scholar 

  20. Patil MJ, Hodges DH, Cesnik CES (2001) Limit-cycle oscillations in high-aspect-ratio wings. J Fluids Struct 15(1):107–132. https://doi.org/10.1006/jfls.2000.0329

    Article  Google Scholar 

  21. Patil MJ, Hodges DH (2004) On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. J Fluids Struct 19(7):905–915. https://doi.org/10.1016/j.jfluidstructs.2004.04.012

    Article  Google Scholar 

  22. Patil MJ, Hodges DH (2006) Flight dynamics of highly flexible flying wings. J Aircraft 43(6):1790–1799. https://doi.org/10.2514/1.17640

    Article  Google Scholar 

  23. Roe PL (1997) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 135(2):250–258. https://doi.org/10.1006/jcph.1997.5705

    MathSciNet  Article  MATH  Google Scholar 

  24. Colella P (1985) A direct Eulerian MUSCL scheme for gas dynamics. SIAM J Sci Stat Comput 6(1):104–117. https://doi.org/10.1137/0906009

    MathSciNet  Article  MATH  Google Scholar 

  25. Coelho RF, Breitkopf P, Knopf-Lenoir C (2008) Model reduction for multidisciplinary optimization-application to a 2D wing. Struct Multidiscip Optim 37(1):29–48. https://doi.org/10.1007/s00158-007-0212-5

    Article  Google Scholar 

  26. Coelho RF, Breitkopf P, Knopf-Lenoir C, Villon P (2009) Bi-level model reduction for coupled problems. Struct Multidiscip Optim 39(4):401–418. https://doi.org/10.1007/s00158-008-0335-3

    MathSciNet  Article  MATH  Google Scholar 

  27. Braun RD, Kroo IM (1995) Development and application of the collaborative optimization architecture in a multidisciplinary design environment. In: Alexandrov N, Hussaini MY (eds) Multidisciplinary design optimization: state-of-the-art. SIAM, Philadelphia, pp 98–116

    Google Scholar 

  28. Beam RM, Warming RoF (1978) An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J 16(4):393–402. https://doi.org/10.2514/3.60901

    Article  MATH  Google Scholar 

  29. Freitag S, Cao BT, Ninić J, Meschke G (2018) Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes. Comput Struct 207:258–273. https://doi.org/10.1016/j.compstruc.2017.03.020

    Article  Google Scholar 

  30. Jun S, Park K-H, Kang H-M, Lee D-H, Cho M (2010) Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis. J Mech Sci Technol 24(2):601–608. https://doi.org/10.1007/s12206-010-0106-0

    Article  Google Scholar 

  31. Seokkwan Y, Antony J (1988) Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier–Stokes equations. AIAA J 26(9):1025–1026. https://doi.org/10.2514/3.10007

    Article  Google Scholar 

  32. Gottlieb S, Shu C-W (1998) Total variation diminishing Runge-Kutta schemes. Math Comput 67(221):73–85. https://doi.org/10.1090/S0025-5718-98-00913-2

    MathSciNet  Article  MATH  Google Scholar 

  33. Shan S, Gary Wang G (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41(2):219–241. https://doi.org/10.1007/s00158-009-0420-2

    MathSciNet  Article  MATH  Google Scholar 

  34. Im S, Kim E, Cho M (2019) Reduction process based on proper orthogonal decomposition for dual formulation of dynamic substructures. Comput Mech 64(5):1237–1257. https://doi.org/10.1007/s00466-019-01702-6

    MathSciNet  Article  MATH  Google Scholar 

  35. Im S, Lee J, Cho M (2021) Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition. Comput Methods Appl Mech Eng 385:114030. https://doi.org/10.1016/j.cma.2021.114030

    MathSciNet  Article  MATH  Google Scholar 

  36. Sotoudeh Z, Hodges DH, Chang C-S (2010) Validation studies for aeroelastic trim and stability of highly flexible aircraft. J Aircraft 47(4):1240–1247. https://doi.org/10.2514/1.46974

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (Ministry of Science, ICT and Future Planning) (number 2012R1A3A2048841), as well as Defense Acquisition Program Administration and Agency for Defense Development under the contract UD100045JD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seongmin Chang or Maenghyo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Im, S., Kim, E., Park, K. et al. Surrogate Model Considering Trim Condition for Design Optimization of High-Aspect-Ratio Flexible Wing. Int. J. Aeronaut. Space Sci. 23, 288–302 (2022). https://doi.org/10.1007/s42405-021-00438-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-021-00438-z

Keywords

  • Surrogate model
  • Structural design optimization
  • Multidisciplinary optimization
  • Proper orthogonal decomposition (POD)
  • Angle of attack (AOA)