Analysis of Characteristics of Swirling Spray of the Ammonium Dinitramide (ADN)-Based Green Monopropellant

  • Jun Chen
  • Guoxiu LiEmail author
  • Tao Zhang
Original Paper


Ammonium dinitramide (ADN) based green propellant is a promising alternative propellant for future space propulsion. Atomization of thruster plays an important role in the entire operation process. This paper describes the effect of swirl injection regarding tangential hole geometric parameter on the atomization characteristics of ADN-based green monopropellant. The experimental apparatus was prepared using a high-speed camera equipped with a macro lens and a Malvern laser particle size analyzer, and an injection device was designed. Characteristics features including particle-size distribution, spray cone, and breakup length of tangential hole number were recorded, and the effect of key parameters on spray processes was evaluated. The results show that the designed swirl injector completely achieved the atomization characteristics. With the increase in tangential hole number, the flow resistance increased, thus significantly affecting the atomization performance. The corresponding average particle size decreased. Moreover, a very large or small tangential hole number clearly affected the breakup length, spray cone angle, and average particle size. The optimum tangential hole diameter was 0.9 mm. The results are beneficial for the improvement of design structure of swirl nozzle based on ADN-based green monopropellant.


Spray characteristics Swirling spray Ammonium dinitramide Green monopropellant 



This work is supported by the Fundamental Research Funds for the Central Universities (2017JBZ102) and Beijing Natural Science Foundation (3184064).


  1. 1.
    Philip M, Boileau M, Vicquelin R et al (2015) Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc Combust Inst 35(3):3159–3166CrossRefGoogle Scholar
  2. 2.
    Kim JS, Kim JS (2009) A characterization of the spray evolution by dual-mode phase doppler anemometry in an injector of liquid-propellant thruster. J Mech Sci Technol 23(6):1637–1649CrossRefGoogle Scholar
  3. 3.
    Ide Y, Takahashi T, Iwai K et al (2015) Potential of ADN-based ionic liquid propellant for spacecraft propulsion. Procedia Eng 99:332–337CrossRefGoogle Scholar
  4. 4.
    Gohardani AS, Stanojev J, Demairé A et al (2014) Green space propulsion: opportunities and prospects. Prog Aerosp Sci 71:128–149CrossRefGoogle Scholar
  5. 5.
    Guan HS, Li GX, Zhang NY (2018) Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant. Acta Astronaut 144:119–125CrossRefGoogle Scholar
  6. 6.
    Zeng H, Li F, Zhang S et al (2015) Midinfrared absorption measurements of nitrous oxide in ammonium dinitramide monopropellant thruster. J Propul Power 31(5):1496–1500CrossRefGoogle Scholar
  7. 7.
    Yao Z, Zhang W, Wang M et al (2015) Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion. Aerosp Sci Technol 45:140–149CrossRefGoogle Scholar
  8. 8.
    Zhang T, Li G, Yu Y et al (2014) Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster. Energy Convers Manage 87:965–974CrossRefGoogle Scholar
  9. 9.
    Lange M, Lein A, Gotzig U, et al (2013). Introduction of a high-performance ADN based monopropellant thruster on the Myriade propulsion subsystem. In: Recent advances in space technologies (RAST), 2013 6th international conference on. IEEE, 2013, pp 549–553Google Scholar
  10. 10.
    Persson M, Anflo K, Dinardi A, Bahu J (2012) A family of thrusters for ADN-based monopropellant LMP-103S. In: 48th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, Atlanta, Georgia, 30 July–1 August 2012Google Scholar
  11. 11.
    Anflo K, Möllerberg R (2009) Flight demonstration of new thruster and green propellant technology on the PRISMA satellite. Acta Astronaut 65(9):1238–1249CrossRefGoogle Scholar
  12. 12.
    Yang R, Thakre P, Yang V (2005) Thermal decomposition and combustion of ammonium dinitramide (review). Combust Explo Shock Waves 41(6):657–679CrossRefGoogle Scholar
  13. 13.
    Sinditskii VP, Egorshev VY, Levshenkov AI et al (2006) Combustion of ammonium dinitramide, part 2: combustion mechanism. J Propul Power 22(4):777–785CrossRefGoogle Scholar
  14. 14.
    Farhat K, Cong W, Batonneau Y et al (2009) Improvement of catalytic decomposition of ammonium nitrate with new bimetallic catalysts. In: AIAA paper, p 4963Google Scholar
  15. 15.
    Chung YJ, Khil TO, Yoon JS et al (2011) Experimental study on simplex swirl injector dynamics with varying geometry. Int J Aeronaut Sp Sci 12(1):57–62CrossRefGoogle Scholar
  16. 16.
    Heo JY, Hong JS, Sung HG (2015) Effect of dynamic SGS Model in a kerosene-LOx swirl injector under supercritical condition. Int J Aeronaut Sp Sci 16(2):254–263CrossRefGoogle Scholar
  17. 17.
    Rashid MSFM, Hamid AHA, Sheng OC et al (2012) Effect of inlet slot number on the spray cone angle and discharge coefficient of swirl atomizer. Procedia Eng 41:1781–1786CrossRefGoogle Scholar
  18. 18.
    Ahn K, Han YM, Choi HS (2012) Effects of recess length on discharge coefficients of swirl coaxial injectors. Combust Sci Technol 184(3):323–336CrossRefGoogle Scholar
  19. 19.
    Xie JL, Gan ZW, Duan F et al (2013) Characterization of spray atomization and heat transfer of pressure swirl nozzles. Int J Therm Sci 68:94–102CrossRefGoogle Scholar
  20. 20.
    Radke CD, Meyer TR, Heindel T (2014) Effect of injector exit geometry on atomization of a liquid-liquid double swirl coaxial injector using non-invasive laser, optical, and X-ray techniques. In: 50th AIAA/ASME/SAE/ASEE joint propulsion conference, p 3787Google Scholar
  21. 21.
    Prakash RS, Gadgil H, Raghunandan BN (2014) Breakup processes of pressure swirl spray in gaseous cross-flow. Int J Multiph Flow 66:79–91CrossRefGoogle Scholar
  22. 22.
    Aleiferis PG, Behringer MK, OudeNijeweme D, Freeland P (2016) Pressure-swirl atomization of gasoline–butanol, gasoline–ethanol, iso-octane–butanol and iso-octane–ethanol blends. J Cell Physiol 226(8):2081–2090Google Scholar
  23. 23.
    Rashad M, Huang Y (2015). Analysis and comparison of correlations established for prediction of SMD for pressure swirl atomizers. In: Applied sciences and technology (IBCAST), 2015 12th international Bhurban conference on. IEEE, pp 460-466Google Scholar
  24. 24.
    Fajgenbaum R, dos Santos RG (2015) Influence of fuel temperature on atomization parameters in a pressure-swirl atomizer from a port fuel injector by Shadowgraphy technique. J Braz Soc Mech Sci Eng 2015:1–16Google Scholar
  25. 25.
    Sivakumar D, Vankeswaram SK, Sakthikumar R et al (2015) Analysis on the atomization characteristics of aviation biofuel discharging from simplex swirl atomizer. Int J Multiph Flow 72:88–96CrossRefGoogle Scholar
  26. 26.
    Broniarz-Press L, Włodarczak S, Matuszak M et al (2016) The effect of orifice shape and the injection pressure on enhancement of the atomization process for pressure-swirl atomizers. Crop Protect 82:65–74CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Power, School of Mechanical, Electronic and Control EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Beijing Institute of Control EngineeringBeijingChina
  3. 3.Beijing Engineering Research Center of Efficient and Green AerospaceBeijingChina

Personalised recommendations