Advertisement

An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites

  • Halil Ersin Söken
Original Paper
  • 9 Downloads

Abstract

We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5\({^{\circ }}\) and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm’s performance in case of a time-variance in the magnetometer errors.

Keywords

Attitude filter Magnetometer calibration Nanosatellite 

Notes

Acknowledgements

This research is supported by JSPS KAKENHI Grant number 16K18313.

References

  1. 1.
    Poghosyan A, Golkar A (2017) CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Prog Aerosp Sci 88:59–83.  https://doi.org/10.1016/j.paerosci.2016.11.002 CrossRefGoogle Scholar
  2. 2.
    Ran D, Sheng T, Cao L, Chen X, Zhao Y (2014) Attitude control system design and on-orbit performance analysis of nano-satellite—"tian Tuo 1". Chin J Aeronaut 27:593–601.  https://doi.org/10.1016/j.cja.2013.11.001 CrossRefGoogle Scholar
  3. 3.
    Busch S, Bangert P, Dombrovski S, Schilling K (2015) UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations. Acta Astronaut 117:73–89.  https://doi.org/10.1016/j.actaastro.2015.08.002 CrossRefGoogle Scholar
  4. 4.
    Lee H, Choi Y-H, Bang H-C, Park J-O (2008) Kalman filtering for spacecraft attitude estimation by low-cost sensors. Int J Aeronaut Space Sci 9:147–161.  https://doi.org/10.5139/IJASS.2008.9.1.147 CrossRefGoogle Scholar
  5. 5.
    Yoo Y, Kim S, Suk J, Kim J (2016) Attitude control system design and verification for CNUSAIL-1 with solar/ drag sail. Int J Aeronaut Space Sci 17:579–92.  https://doi.org/10.5139/IJASS.2016.17.4.579 CrossRefGoogle Scholar
  6. 6.
    Asundi S, Latchman H, Fitz-Coy N. Attitude estimation for picosatellites with distributed computing platform using Murrell’s algorithm of the extended Kalman filter. In: 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, Louisiana, pp 1–14.  https://doi.org/10.13140/RG.2.1.1821.6162
  7. 7.
    Pham MD, Low KS, Goh ST, Chen S (2015) Gain-scheduled extended kalman filter for nanosatellite attitude determination system. IEEE Trans Aerosp Electron Syst 51:1017–1028.  https://doi.org/10.1109/TAES.2014.130204 CrossRefGoogle Scholar
  8. 8.
    Kiani M, Pourtakdoust SH, Sheikhy AA (2015) Consistent calibration of magnetometers for nonlinear attitude determination. Measurement, vol 73, pp 180–190. Elsevier Ltd.  https://doi.org/10.1016/j.measurement.2015.05.005
  9. 9.
    Soken HE, Hajiyev C. Reconfigurable UKF for in-flight magnetometer calibration and attitude parameter estimation. In: IFAC Proceedings Volumes (IFAC-PapersOnline).  https://doi.org/10.3182/20110828-6-IT-1002.00330
  10. 10.
    Inamori T, Sako N, Nakasuka S. Strategy of magnetometer calibration for nano-satellite missions and in-orbit performance. AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics, Toronto.  https://doi.org/10.2514/6.2010-7598
  11. 11.
    Springmann JC, Cutler JW (2012) Attitude-independent magnetometer calibration with time-varying bias. J Guid Control Dyn 35:1080–1088.  https://doi.org/10.2514/1.56726 CrossRefGoogle Scholar
  12. 12.
    Kim E, Bang H, Lee S-H (2011) Attitude independent magnetometer calibration considering magnetic torquer coupling effect. J Spacecr Rockets 48:691–694.  https://doi.org/10.2514/1.52634 CrossRefGoogle Scholar
  13. 13.
    Cilden D, Hajiyev C, Soken HE. Attitude and attitude rate estimation for a nanosatellite using SVD and UKF. In: RAST 2015—Proceedings of 7th International Conference on Recent Advances in Space Technologies.  https://doi.org/10.1109/RAST.2015.7208431
  14. 14.
    Cilden D, Soken HE, Hajiyev C (2017) Nanosatellite attitude estimation from vector measurements using SVD-AIDED UKF algorithm. Metrol Measure Syst.  https://doi.org/10.1515/mms-2017-0011
  15. 15.
    Soken HE, Cilden D, Hajiyev C. Integration of single-frame and filtering methods for nanosatellite attitude estimation. Multisensor Attitude Estimation. CRC Press. pp 463–484.  https://doi.org/10.1201/9781315368795-27
  16. 16.
    Hajiyev C, Bahar M (2003) Attitude determination and control system design of the ITU-UUBF LEO1 satellite. Acta Astronaut 52:493–499.  https://doi.org/10.1016/S0094-5765(02)00192-3 CrossRefGoogle Scholar
  17. 17.
    Mimasu BY, JC Van Der Ha (2008) Attitude determination concept for QSAT. pp 1–6.  https://doi.org/10.2322/tstj.7.Pd_63
  18. 18.
    Nakajima Y, Murakami N, Ohtani T, Nakamura Y, Hirako K, Inoue K. SDS-4 attitude control system: in-flight results of three axis attitude control for small satellites. In: 19th IFAC Symposium on Automatic Control in Aerospace, IFAC. pp 283–238.  https://doi.org/10.3182/20130902-5-DE-2040.00077
  19. 19.
    Markley FL, Crassidis JL (2014) Fundamentals of spacecraft attitude determination and control. Springer New York, New York, NY.  https://doi.org/10.1007/978-1-4939-0802-8 CrossRefzbMATHGoogle Scholar
  20. 20.
    Crassidis J, Markley FL (2003) Unscented filtering for spacecraft attitude estimation. J Guid Control Dyn 26:536–42.  https://doi.org/10.2514/2.5102 CrossRefGoogle Scholar
  21. 21.
    Vallado DA (2001) Fundamentals of astrodynamics and applications. Springer, The NetherlandszbMATHGoogle Scholar
  22. 22.
    Julier SJ, Uhlmann JK, Durrant-Whyte HF (1995) A new approach for filtering nonlinear systems. In: Proceedings of 1995 American Control Conference—ACC’95, vol 3.  https://doi.org/10.1109/ACC.1995.529783

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Japan Aerospace Exploration Agency (JAXA)Institute of Space and Astronautical Science (ISAS)SagamiharaJapan

Personalised recommendations