Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

Original Paper

Abstract

In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

Keywords

Adaptive control Satellite attitude control Multiple model 

References

  1. 1.
    Wertz JR (1978) Spacecraft attitude determination and control, vol 73, 1st edn. Springer, Dordrecht.  https://doi.org/10.1007/978-94-009-9907-7 CrossRefGoogle Scholar
  2. 2.
    Schaub H, Junkins JL (2014) Analytical mechanics of space systems, 3rd edn. American Institute of Aeronautics and Astronautics Inc., Washington, DC.  https://doi.org/10.2514/4.102400 MATHGoogle Scholar
  3. 3.
    Sidi MJ (1997) Spacecraft dynamics and control: a practical engineering approach. Cambridge aerospace series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Markley FL, Crassidis JL (2014) Fundamentals of spacecraft attitude determination and control, 1st edn. Springer, New York.  https://doi.org/10.1007/978-1-4939-0802-8 MATHGoogle Scholar
  5. 5.
    Wen JT-Y, Kreutz-Delgado K (1991) The attitude control problem. IEEE Trans Autom Control 36(10):1148–1162.  https://doi.org/10.1109/9.90228 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chaturvedi N, Sanyal A, McClamroch N (2011) Rigid-body attitude control. IEEE Control Syst 31(3):30–51.  https://doi.org/10.1109/MCS.2011.940459 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhat SP, Bernstein DS (2000) A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst Control Lett 39(1):63–70.  https://doi.org/10.1016/S0167-6911(99)00090-0 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Tsiotras P (1996) Stabilization and optimality results for the attitude control problem. J Guid Control Dyn 19(4):772–779.  https://doi.org/10.2514/3.21698 CrossRefMATHGoogle Scholar
  9. 9.
    Wie B, Barba PM (1985) Quaternion feedback for spacecraft large angle maneuvers. J Guid Control Dyn 8(3):360–365.  https://doi.org/10.2514/3.19988 CrossRefMATHGoogle Scholar
  10. 10.
    Salcudean S (1991) A globally convergent angular velocity observer for rigid body motion. IEEE Trans Autom Control 36(12):1493–1497.  https://doi.org/10.1109/9.106169 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lizarralde F, Wen JT (1996) Attitude control without angular velocity measurement: a passivity approach. IEEE Trans Autom Control 41(3):468–472.  https://doi.org/10.1109/9.486654 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tsiotras P (1998) Further passivity results for the attitude control problem. IEEE Trans Autom Control 43(11):1597–1600.  https://doi.org/10.1109/9.728877 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Tayebi A (2008) Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans Autom Control 53(6):1516–1520.  https://doi.org/10.1109/TAC.2008.927789 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zou A-M (2014) Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans Control Syst Technol 22(1):338–345.  https://doi.org/10.1109/TCST.2013.2246836 CrossRefGoogle Scholar
  15. 15.
    Capua A, Shapiro A, Choukroun D (2014) Robust nonlinear H\(\infty \) output-feedback for spacecraft attitude control. In: AIAA guidance, navigation, and control conferenceGoogle Scholar
  16. 16.
    Show L-L, Juang J-C, Jan Y-W (2003) An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol 11(1):73–83.  https://doi.org/10.1109/TCST.2002.806450 CrossRefGoogle Scholar
  17. 17.
    Singh S (1987) Robust nonlinear attitude control of flexible spacecraft. IEEE Trans Aerosp Electron Syst AES–23(3):380–387.  https://doi.org/10.1109/TAES.1987.310836 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu Q, Li B, Zhang Y (2013) Robust attitude control design for spacecraft under assigned velocity and control constraints. ISA Trans 52(4):480–493.  https://doi.org/10.1016/j.isatra.2013.03.003 CrossRefGoogle Scholar
  19. 19.
    Schaub H, Akella MR, Junkins JL (2001) Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J Guid Control Dyn 24(1):95–100.  https://doi.org/10.2514/2.4680 CrossRefGoogle Scholar
  20. 20.
    Singla P, Singh T (2008) An adaptive attitude control formulation under angular velocity constraints. In: AIAA guidance, navigation and control conference and exhibitGoogle Scholar
  21. 21.
    Singla P, Subbarao K, Junkins JL (2006) Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J Guid Control Dyn 29(4):892–902.  https://doi.org/10.2514/1.17498 CrossRefGoogle Scholar
  22. 22.
    Lu K, Xia Y (2013) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12):3591–3599.  https://doi.org/10.1016/j.automatica.2013.09.001 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Guo Y, Song S (2014) Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix. Chin J Aeronaut 27(2):375–382.  https://doi.org/10.1016/j.cja.2014.02.017 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Seo D, Akella MR (2008) High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J Guid Control Dyn 31(4):884–891.  https://doi.org/10.2514/1.33308 CrossRefGoogle Scholar
  25. 25.
    Maybeck PS (1999) Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int J Robust Nonlinear Control 9(14):1051–1070.  https://doi.org/10.1002/(SICI)1099-1239(19991215)9:14%3c1051::AID-RNC452%3e3.0.CO;2-0 CrossRefGoogle Scholar
  26. 26.
    Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187.  https://doi.org/10.1109/9.554398 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fekri S, Athans M, Pascoal A (2006) Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process 20(10):519–579.  https://doi.org/10.1002/acs.912 MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hassani V, Hespanha JP, Athans M, Pascoal AM (2011) Stability analysis of robust multiple model adaptive control. IFAC Proc 44(1):350–355.  https://doi.org/10.3182/20110828-6-IT-1002.01194 CrossRefGoogle Scholar
  29. 29.
    Zhang W (2013) Stable weighted multiple model adaptive control: discrete-time stochastic plant. Int J Adapt Control Signal Process 27(7):562–581.  https://doi.org/10.1002/acs.2328 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Han Z, Narendra KS (2012) New concepts in adaptive control using multiple models. IEEE Trans Autom Control 57(1):78–89.  https://doi.org/10.1109/TAC.2011.2152470 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Ngo KB, Mahony R, Jiang ZP (2004) Integrator backstepping design for motion systems with velocity constraint. In: Control conference, 2004, 5th Asian, pp 141–146Google Scholar
  32. 32.
    Lu Jianbo, Wie B (1994) Nonlinear quaternion feedback control for spacecraft via angular velocity shaping. In: Proceedings of 1994 American control conference—ACC ’94, vol 1, pp 632–636Google Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentShahed UniversityTehranIran

Personalised recommendations