Skip to main content

Advertisement

Log in

Potential Therapeutic Use of Coenzyme Q10 in Diabetes Mellitus and Its Complications: an Algorithm of Scoping Clinical Review

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Results from investigations about the effect of coenzyme Q10 supplementation on diabetes mellitus and its related complications have varied and are slightly inconsistent. This review study aims at highlighting key points in several clinical trials, the potential effect of coenzyme Q10 on glycaemic biomarkers in diabetes mellitus alongside its complications while spotting out several similarities and differences within clinical trials. Twenty-six articles from well-known databases that provided details on clinical trials between 1999 and 2020were reviewed. In summarized tables, the articles provided information on the effects of coenzyme Q10 supplementation on glycaemic control of diabetes mellitus and its complications. Four of thirteen studies reported no significant changes in metabolic parameters of diabetes mellitus; three results from these studies reported that there might be improved glycaemic control especially when coenzyme Q10 is taken in combination with conventional antidiabetic medicines. Results from the other thirteen clinical studies on main outcomes of diabetic complications also varied. Eight of these clinical trials revealed that coenzyme Q10 improved endothelial function thereby reducing vasculopathy and nephropathy of diabetes mellitus complications, while two double-blind placebo-controlled clinical trial showed significant improvement in neuropathy and retinopathy symptoms of diabetes mellitus, respectively. It was observed that the clinical trials with the lowest population sizes concluded that coenzyme Q10 may contribute to potential long-term benefits in the treatment of type 2 diabetic patients and its complications; however, more randomized and large-sample-size trials of coenzyme Q10 for type 2 diabetes mellitus are needed in the nearby future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM. 2004;97(8):537–48.

    CAS  PubMed  Google Scholar 

  2. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7. https://doi.org/10.4103/0975-7406.84471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parmar SS, Jaiwal A, Dhankher OP, Jaiwal PK. Coenzyme Q10 production in plants: current status and future prospects. Crit Rev Biotechnol. 2015;35(2):152–64.

    CAS  PubMed  Google Scholar 

  4. Beal MF. Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases. Biofactors. 1999;9(2-4):261–6.

    CAS  PubMed  Google Scholar 

  5. Weber C, Bysted A, Hølmer G. Intestinal absorption of coenzyme Q10 administered in a meal or as capsules to healthy subjects. Nutr Res. 1997;17(6):941–5.

    CAS  Google Scholar 

  6. Mattila P, Kumpulainen J. Coenzymes Q9 and Q10: contents in foods and dietary intake. J Food Compos Anal. 2001;14(4):409–17.

    CAS  Google Scholar 

  7. Kamei M, Fujita T, Kanbe T, Sasaki K, Oshiba K, Otani S, et al. The distribution and content of ubiquinone in foods. Int J Vitam Nutr Res.

  8. Weber C, Bysted A, Hølmer G. Coenzyme Q10 in the diet--daily intake and relative bioavailability. Mol Asp Med. 1997;18(Suppl):S251–4.

    CAS  Google Scholar 

  9. Potgieter M, Pretorius E, Pepper MS. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr Rev. 2013;71(3):180–8.

    PubMed  Google Scholar 

  10. Ochiai A, Itagaki S, Kurokawa T, Kobayashi M, Hirano T, Iseki K. Improvement in intestinal coenzyme q10 absorption by food intake. Yakugaku Zasshi. 2007;127(8):1251–4.

    CAS  PubMed  Google Scholar 

  11. Shults CW, Flint Beal M, Song D, Fontaine D. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol. 2004;188(2):491–4.

    CAS  PubMed  Google Scholar 

  12. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7(Suppl):S78–88.

    CAS  PubMed  Google Scholar 

  13. Katayama K, Fujita T. Studies on the lymphatic absorption of 10 ,20 -(3 H)-coenzyme Q10 in rats. Chem Pharm Bull. 1972;250:2585–92.

    Google Scholar 

  14. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res. 2006;40(5):445–53.

    CAS  PubMed  Google Scholar 

  15. Kwong LK, Kamzalov S, Rebrin I, Bayne AC, Jana CK, Morris P, et al. Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic Biol Med. 2002;33(5):627–38.

    CAS  PubMed  Google Scholar 

  16. Crane FL, Hatefi Y, Lester RL, Widmer C. Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta. 1957;25(1):220–1.

    CAS  PubMed  Google Scholar 

  17. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–8.

    CAS  PubMed  Google Scholar 

  18. Mitchell P. The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron-driven proton translocation. In: Lenaz G, Barnabei O, Battino M, editors. Highlights in ubiquinone research. London: Taylor and Francis; 1990. p. 77–82.

    Google Scholar 

  19. Ito H, Nakajima T, Takikawa R, Hamada E, Iguchi M, Sugimoto T, et al. Coenzyme Q10 attenuates cyanide-activation of the ATP-sensitive K+ channel current in single cardiac myocytes of the Guinea pig. Naunyn Schmiedeberg's Arch Pharmacol. 1991;344(1):133–6.

    CAS  Google Scholar 

  20. Nohl H, Gille L. The role of coenzyme Q in lysosomes. In: Kagan VEQ, P. J., ed. Coenzyme Q: molecular mechanisms in health and disease. Boca Raton: CRC Press; 2001:99-106.

  21. Navas P, Villalba JM, de Cabo R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion. 2007;7(Suppl):S34–40.

    CAS  PubMed  Google Scholar 

  22. Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018;7:e32111.

    PubMed  PubMed Central  Google Scholar 

  23. Thomas SR, Neuzil J, Stocker R. Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler Thromb Vasc Biol. 1996;16(5):687–96.

    CAS  PubMed  Google Scholar 

  24. Eriksson JG, Forsén TJ, Mortensen SA, Rohde M. The effect of coenzyme Q10 administration on metabolic control in patients with type 2 diabetes mellitus. Biofactors. 1999;9(2-4):315–8.

    CAS  PubMed  Google Scholar 

  25. Henriksen JE, Andersen CB, Hother-Nielsen O, Vaag A, Mortensen SA, Beck-Nielsen H. Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with type 1 diabetes mellitus. Diabet Med. 1999;16(4):312–8.

    CAS  PubMed  Google Scholar 

  26. Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD. Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr. 2002;56(11):1137–42.

    CAS  PubMed  Google Scholar 

  27. Mezawa M, Takemoto M, Onishi S, Ishibashi R, Ishikawa T, Yamaga M, et al. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: an open label pilot study. Biofactors. 2012;38(6):416–21.

    CAS  PubMed  Google Scholar 

  28. Kolahdouz Mohammadi R, Hosseinzadeh-Attar MJ, Eshraghian MR, Nakhjavani M, Khorami E, Esteghamati A. The effect of coenzyme Q10 supplementation on metabolic status of type 2 diabetic patients. Minerva Gastroenterol Dietol. 2013;59(2):231–6.

    CAS  PubMed  Google Scholar 

  29. Mohammed-Jawad NK. Al- Sabbagh M, Al-Jezaeri KA. Role of L-carnitine and coenzyme Q10 as adjuvant therapy in patients with type 2 diabetes mellitus. Am J Pharmacol Sci. 2014;2(5):82–6.

    Google Scholar 

  30. Zahedi H, Eghtesadi S, Seifirad S, Rezaee N, Shidfar F, Heydari I, et al. Effects of CoQ10 supplementation on lipid profiles and glycemic control in patients with type 2 diabetes: a randomized, double blind, placebo-controlled trial. J Diabetes Metab Disord. 2014;13:81.

    PubMed  PubMed Central  Google Scholar 

  31. Moazen M, Mazloom Z, Ahmadi A, Dabbaghmanesh MH, Roosta S. Effect of coenzyme Q10 on glycaemic control, oxidative stress and adiponectin in type 2 diabetes. J Pak Med Assoc. 2015;65(4):404–8.

    PubMed  Google Scholar 

  32. Montano SJ, Grinier J, Nair D, Tekle M, Fernandes AP, Hua X, et al. Glutaredoxin mediated redox effects of CoQ10 treatment in type 1 and type 2 diabetes patients. BBA Clin. 2015;4:14–20.

    PubMed  PubMed Central  Google Scholar 

  33. Raygan F, Rezavandi Z, Dadkhah Tehrani S, Farrokhian A, Asemi Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur J Nutr. 2016;55(8):2357–64.

    CAS  PubMed  Google Scholar 

  34. Mehrdadi P, Kolahdouz Mohammadi R, Alipoor E, Eshraghian MR, Esteghamati A, Hosseinzadeh-Attar MJ. The effect of coenzyme Q10 supplementation on circulating levels of novel adipokine adipolin/CTRP12 in overweight and obese patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2017;125(3):156–62.

    CAS  PubMed  Google Scholar 

  35. Yen CH, Chu YJ, Lee BJ, Lin YC, Lin PT. Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial. Br J Nutr. 2018;120(1):57–63.

    CAS  PubMed  Google Scholar 

  36. Gholami M, Rezvanfar MR, Delavar M, Abdollahi M, Khosrowbeygi A. Effects of coenzyme Q10 supplementation on serum values of gamma-glutamyl transferase, pseudocholinesterase, bilirubin, ferritin, and high-sensitivity C-reactive protein in women with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2019;127(5):311–9.

    CAS  PubMed  Google Scholar 

  37. Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V. Coenzyme Q (10) improves endothelial dysfunction of the brachial artery in type II diabetes mellitus. Diabetologia. 2002;45(3):420–6.

    CAS  PubMed  Google Scholar 

  38. Playford DA, Watts GF, Croft KD, Burke V. Combined effect of coenzyme Q10 and fenofibrate on forearm microcirculatory function in type 2 diabetes. Atherosclerosis. 2003;168(1):169–79.

    CAS  PubMed  Google Scholar 

  39. Lim SC, Lekshminarayanan R, Goh SK, Ong YY, Subramaniam T, Sum CF, et al. The effect of coenzyme Q10 on microcirculatory endothelial function of subjects with type 2 diabetes mellitus. Atherosclerosis. 2008;196(2):966–9.

    CAS  PubMed  Google Scholar 

  40. Hamilton SJ, Chew GT, Watts GF. Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care. 2009;32(5):810–2.

    PubMed  PubMed Central  Google Scholar 

  41. Hosseinzadeh-Attar M, Kolahdouz Mohammadi R, Eshraghian M, Nakhjavani M, Khorrami E, Ebadi M, et al. Reduction in asymmetric dimethylarginine plasma levels by coenzyme Q10 supplementation in patients with type 2 diabetes mellitus. Minerva Endocrinol. 2015;40(4):259–66.

    CAS  PubMed  Google Scholar 

  42. Al-Kuraishy HM, Al-Gareeb AI, Shams HA, Al-Mamorri F. Endothelial dysfunction and inflammatory biomarkers as a response factor of concurrent coenzyme Q10 add-on metformin in patients with type 2 diabetes mellitus. J Lab Phys. 2019;11(4):317–22.

    CAS  Google Scholar 

  43. Dzugkoev SG, Kaloeva MB, Dzugkoeva FS. Effect of combination therapy with coenzyme Q10 on functional and metabolic parameters in patients with type 1 diabetes mellitus. Bull Exp Biol Med. 2012;152(3):364–6.

    CAS  PubMed  Google Scholar 

  44. Heidari A, Hamidi G, Soleimani A, Aghadavod E, Asemi Z. Effects of coenzyme Q10 supplementation on gene expressions related to insulin, lipid, and inflammation pathways in patients with diabetic nephropathy. Iran J Kidney Dis. 2018;12(1):14–21.

    PubMed  Google Scholar 

  45. Gholnari T, Aghadavod E, Soleimani A, Hamidi GA, Sharifi N, Asemi Z. The effects of coenzyme Q10 supplementation on glucose metabolism, lipid profiles, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr. 2018;37(3):188–93.

    CAS  PubMed  Google Scholar 

  46. Fallah M, Askari G, Soleimani A, Feizi A, Asemi Z. Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patients. Int Urol Nephrol. 2018;50(11):2073–9.

    CAS  PubMed  Google Scholar 

  47. Hernández-Ojeda J, Cardona-Muñoz EG, Román-Pintos LM, Troyo-Sanromán R, Ortiz-Lazareno PC, Cárdenas-Meza MA, et al. The effect of ubiquinone in diabetic polyneuropathy: a randomized double-blind placebo-controlled study. J Diabetes Complicat. 2012;26(4):352–8.

    Google Scholar 

  48. Forsberg E, Xu C, Grünler J, Frostegård J, Tekle M, Brismar K, et al. Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J Diabetes Complicat. 2015;29(8):1152–8.

    Google Scholar 

  49. Rodríguez-Carrizalez AD, Castellanos-González JA, Martínez-Romero EC, Miller-Arrevillaga G, Pacheco-Moisés FP, Román-Pintos LM, et al. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: a phase II-a, randomized, double-blind, and placebo-controlled study. Redox Rep. 2016;21(4):155–63.

    PubMed  Google Scholar 

  50. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622.

    CAS  PubMed  Google Scholar 

  51. Fagot-Campagna A, Pettitt DJ, Engelgau MM, Burrows NR, Geiss LS, Valdez R, et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J Pediatr. 2000;136(5):664–72.

    CAS  PubMed  Google Scholar 

  52. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor AA. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin N Am. 2001;30(4):983–97.

    CAS  Google Scholar 

  55. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weber C, Bysted A, Hollmer G. The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res. 1997;67:123–9.

    CAS  PubMed  Google Scholar 

  57. Amin MM, Asaad GF, Abdel Salam RM, El-Abhar HS, Arbid MS. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PLoS One. 2014;9(2):e89169.

    PubMed  PubMed Central  Google Scholar 

  58. Román-Pintos LM, Villegas-Rivera G, Rodríguez-Carrizalez AD, Miranda-Díaz AG, Cardona-Muñoz EG. Diabetic polyneuropathy in type 2 diabetes mellitus: inflammation, oxidative stress, and mitochondrial function. J Diabetes Res. 2016;2016:3425617.

    PubMed  PubMed Central  Google Scholar 

  59. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    CAS  PubMed  Google Scholar 

  60. Lim SC, Tan HH, Goh SK, Subramaniam T, Sum CF, Tan IK, et al. Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q(10). Diabet Med. 2006;23(12):1344–9.

    CAS  PubMed  Google Scholar 

  61. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    CAS  PubMed  Google Scholar 

  63. Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol. 2001;281(3):H981–6.

    CAS  PubMed  Google Scholar 

  64. Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(3):413–20.

    CAS  PubMed  Google Scholar 

  65. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol. 2018;175(8):1279–92.

    CAS  PubMed  Google Scholar 

  66. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 2002;51(1):159–67.

    CAS  PubMed  Google Scholar 

  67. Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, et al. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol. 2007;566(1-3):1–10.

    CAS  PubMed  Google Scholar 

  68. Morse E, Schroth J, You YH, Pizzo DP, Okada S, Ramachandrarao S, et al. TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Phys Renal Phys. 2010;299(5):F965–72.

    CAS  Google Scholar 

  69. Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Phys Renal Phys. 2011;300(5):F1054–61.

    CAS  Google Scholar 

  70. Chiang CK, Wang CC, Lu TF, Huang KH, Sheu ML, Liu SH, et al. Involvement of endoplasmic reticulum stress, autophagy, and apoptosis in advanced glycation end products-induced glomerular mesangial cell injury. Sci Rep. 2016;6:34167.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Joven MH, Anderson RJ. Update on blood pressure control and renal outcomes in diabetes mellitus. Curr Diab Rep. 2015;15(7):44.

    PubMed  Google Scholar 

  72. Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol. 2008;11:2225–36.

    Google Scholar 

  73. Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Phys Renal Phys. 2010;299(4):F821–9.

    CAS  Google Scholar 

  74. Wang L, Teng Z, Cai S, Wang D, Zhao X, Yu K. The association between the PPARγ2 Pro12Ala polymorphism and nephropathy susceptibility in type 2 diabetes: a meta-analysis based on 9,176 subjects. Diagn Pathol. 2013;8:118.

    PubMed  PubMed Central  Google Scholar 

  75. Liu G, Zhou TB, Jiang Z, Zheng D, Yuan F, Li Y, et al. Relationship between PPARγ Pro12Ala gene polymorphism and type 2 diabetic nephropathy risk in Asian population: results from a meta-analysis. J Recept Signal Transduct Res. 2014;34(2):131–6.

    CAS  PubMed  Google Scholar 

  76. Yang J, Zhou Y, Guan Y. PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens. 2012;21(1):97–105.

    PubMed  Google Scholar 

  77. Rivero A, Mora C, Muros M, García J, Herrera H, Navarro-González JF. Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clin Sci (Lond). 2009;116(6):479–92.

    CAS  Google Scholar 

  78. McCarthy ET, Sharma R, Sharma M, Li JZ, Ge XL, Dileepan KN, et al. TNF-alpha increases albumin permeability of isolated rat glomeruli through the generation of superoxide. J Am Soc Nephrol. 1998;9(3):433–8.

    CAS  PubMed  Google Scholar 

  79. Engerman RL, Kern TS. Hyperglycemia as a cause of diabetic retinopathy. Metabolism. 1986;35(4 Suppl 1):20–3.

    CAS  PubMed  Google Scholar 

  80. Kern TS, Barber AJ. Retinal ganglion cells in diabetes. J Physiol. 2008;586(18):4401–8. https://doi.org/10.1113/jphysiol.2008.156695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Tomeo G, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci. 2000;41:3972–8.

    CAS  PubMed  Google Scholar 

  82. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038.

    PubMed  PubMed Central  Google Scholar 

  83. Mancino R, Di Pierro D, Varesi C, Cerulli A, Feraco A, Cedrone C, et al. Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis. 2011;17:1298–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Doganay S, Evereklioglu C, Er H, Türköz Y, Sevinç A, Mehmet N, et al. Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye (Lond). 2002;16(2):163–70.

    CAS  Google Scholar 

  85. Castilho Á, Aveleira CA, Leal EC, Simões NF, Fernandes CR, Meirinhos RI, et al. Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One. 2012;7(8):e42428.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Leal EC, Manivannan A, Hosoya K, Terasaki T, Cunha-Vaz J, Ambrósio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2007;48(11):5257–65.

    PubMed  Google Scholar 

  87. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34.

    PubMed  PubMed Central  Google Scholar 

  88. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    CAS  PubMed  Google Scholar 

  89. Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB. Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol. 1994;36(6):882–8.

    CAS  PubMed  Google Scholar 

Download references

Data and Materials Availability

Not applicable.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Al-Taie A conceived of the study. Al-Taie A, Victoria AQ and Hafeez A reviewed the literature, conducted the quality assessment and extracted the data. Al-Taie A and Victoria AQ developed the methods and drafted the manuscript. Hafeez A reviewed the data, participated in the data interpretation and supported the data interpretation. Al-Taie A was the project manager and advisor on the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anmar Al-Taie.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Taie, A., Victoria, A.O. & Hafeez, A. Potential Therapeutic Use of Coenzyme Q10 in Diabetes Mellitus and Its Complications: an Algorithm of Scoping Clinical Review. SN Compr. Clin. Med. 3, 989–1001 (2021). https://doi.org/10.1007/s42399-021-00819-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-021-00819-1

Keywords

Navigation