Skip to main content

Advertisement

Log in

Dysbiosis of Oral Microbiota and Its Effect on Epithelial-Mesenchymal Transition: a Review

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Malignancies of the oral cavity are common all over the world as well as in India. It has been estimated that, on an average, 70–80% of oral cancers are caused by excessive chewing of betel nut and areca nut and smoking. The cancers arise from various pre-existing potentially malignant lesions and conditions, which are aggravated by various pathogenic oral microbiome. The existing literature credits microbial dysbiosis as one of the key factors behind a number of oral diseases. Interaction between oral epithelial cells and microbes endows oral cells with the capability of undergoing invasion and metastasis. This microbial interference to the transformed epithelial cells promotes epithelial-mesenchymal transition (EMT). Epithelial-mesenchymal transition is a physiological process which allows polarized epithelial cells to mimic mesenchymal phenotype through various biochemical and molecular changes. Epithelial cell interacts with basal membrane via basal cells. EMT induces the invasiveness of these cells leading to metastasis, resistance to apoptosis, and increased production of extracellular matrix components. They degrade the basement membrane and form mesenchymal-like cells that migrate away from the epithelial layer. Microbial intervention causes downregulation of important epithelial markers like E-cadherin and β-catenin along with upregulation of mesenchymal markers, such as N-cadherin, vimentin, and fibronectin. The current review tries to discuss the role of oral microbiota in hastening the process of EMT and the possible mechanisms involved in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. Lip, oral cavity: Globocan 2018 [Internet]. The Global Cancer Observatory, WHO. 2019. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/1-Lip-oral-cavity-fact-sheet.pdf

  2. International Agency for research on cancer. Lip and oral cavity cancer statistics in India: GLOBOCAN 2018 [Internet]. WHO. 2019. Available from: https://gco.iarc.fr/today/data/factsheets/populations/356-india-fact-sheets.pdf

  3. Beynon RA, Lang S, Schimansky S, Penfold CM, Waylen A, Thomas SJ, et al. Tobacco smoking and alcohol drinking at diagnosis of head and neck cancer and all-cause mortality: results from head and neck 5000, a prospective observational cohort of people with head and neck cancer. Int J Cancer. 2018;143(5):1114–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lafauri GI, Perdomo SJ, Buenahora MR. Human papilloma virus: an etiological and prognostic factor for oral cancer? J Investig Clin Dent. 2018;9:e12313.

    Google Scholar 

  5. Al-Hebshi NN, Borgnakke WS, Johnson NW. The microbiome of oral squamous cell carcinomas: a functional perspective. Curr Oral Health Rep. 2019;6:145–60. https://doi.org/10.1007/s40496-019-0215-5.

    Article  Google Scholar 

  6. Awadallah M, Idle M, Patel K, et al. Management update of potentially premalignant oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125:628–36 https://www.oooojournal.net/article/S2212-4403(18)30848-4/pdf.

    PubMed  Google Scholar 

  7. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018 December;16(12):745–59. https://doi.org/10.1038/s41579-018-0089-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488–500. https://doi.org/10.1007/s13238-018-0548-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;

  10. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.

    PubMed  PubMed Central  Google Scholar 

  11. Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent. 2013;5:11–9.

    PubMed  PubMed Central  Google Scholar 

  12. Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012;18(2):109–20.

    CAS  PubMed  Google Scholar 

  13. Chen T, Yu W-H, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010;2010:baq013.

    Google Scholar 

  14. Mäkinen A, Nawaz A, Mäkitie A, Meurman JH. Role of non-albicans Candida and Candida albicans in oral squamous cell cancer patients. J Oral Maxillofac Surg. 2018;76(12):2564–71. https://doi.org/10.1016/j.joms.2018.06.012.

    Article  PubMed  Google Scholar 

  15. Wang X, Du L, You J, King JB, Cichewicz RH. Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org Biomol Chem. 2012;10(10):2044–50. https://doi.org/10.1039/c2ob06856g.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Gao Y, Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ Microbiol. 2016;18(7):2143–58. https://doi.org/10.1111/1462-2920.12923.

    Article  CAS  PubMed  Google Scholar 

  17. Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms. 2020;8(2):308. Published 2020 Feb 23. https://doi.org/10.3390/microorganisms8020308.

    Article  CAS  PubMed Central  Google Scholar 

  18. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 2003;30(7):644–54. https://doi.org/10.1034/j.1600-051x.2003.00376.x.

    Article  PubMed  Google Scholar 

  19. Takahashi N. Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser. 2005;1284:103–12.

    CAS  Google Scholar 

  20. Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431(16):2957–69. https://doi.org/10.1016/j.jmb.2019.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014;162(2PtA):22–38. https://doi.org/10.1016/j.imlet.2014.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mager D, Haffajee A, Devlin P, Norris C, Posner M, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects oral squamous cell carcinoma oral mucosabacterial markers bacteria early detection. J Transl Med. 2005;3:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40. https://doi.org/10.1007/s00203-018-1505-3.

    Article  CAS  PubMed  Google Scholar 

  24. Rusthen S, Kristoffersen AK, Young A, et al. Dysbiotic salivary microbiota in dry mouth and primary Sjögren’s syndrome patients. PLoS One. 2019;14(6):e0218319. Published 2019 Jun 18. https://doi.org/10.1371/journal.pone.0218319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He J, Li Y, Cao Y, Xue J, Zhou X. The oral microbiome diversity and its relation to human diseases. Folia Microbiol (Praha). 2015;60(1):69–80.

    CAS  Google Scholar 

  26. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, et al. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol. 2003;41(2):558–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marsh PD. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 2006;6(SUPPL. 1):1–7.

    Google Scholar 

  28. Keijser BJ, Zaura E, Huse SM, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11):1016–20. https://doi.org/10.1177/154405910808701104.

    Article  CAS  PubMed  Google Scholar 

  29. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, et al. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001;183(12):3770–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson-filho P, Borba IG, De KSF, Assed R, Silva B, De Queiroz AM. Dynamics of microbial colonization of the oral cavity in newborns. Braz Dent J. 24(42013):415–9.

  31. Merglova V, Polenik P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol (Praha). 2016;61(5):423–9. https://doi.org/10.1007/s12223-016-0453-z.//.

    Article  CAS  Google Scholar 

  32. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li J, Helmerhorst EJ, Leone CW, et al. Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol. 2004;97(6):1311–8. https://doi.org/10.1111/j.1365-2672.2004.02420.x.

    Article  CAS  PubMed  Google Scholar 

  34. Parahitiyawa NB, Scully C, Leung WK, Yam WC, Jin LJ, Samaranayake LP. Exploring the oral bacterial flora: current status and future directions. Oral Dis. 2010;16(2):136–45.

    CAS  PubMed  Google Scholar 

  35. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20514045.

    CAS  PubMed  Google Scholar 

  36. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294–303.

    CAS  PubMed  Google Scholar 

  37. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80. Available from. https://doi.org/10.1038/nrmicro2381.

    Article  CAS  PubMed  Google Scholar 

  38. Naginyte M, Do T, Meade J, et al. Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci Rep. 2019;9:5491. https://doi.org/10.1038/s41598-019-41,882-y.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-hebshi NN, Al-Alimi A, Taiyeb-Ali T, Jaafar N. Quantitative analysis of classical and new putative periodontal pathogens in subgingival biofilm: a case-control study. J Periodontal Res. 2015;50(3):320–9.

    CAS  PubMed  Google Scholar 

  40. Shaw L, Harjunmaa U, Doyle R, et al. Distinguishing the signals of gingivitis and periodontitis in supragingival plaque: a cross-sectional cohort study in Malawi. Appl Environ Microbiol. 2016;82(19):6057–67. Published 2016 Sep 16. https://doi.org/10.1128/AEM.01756-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe [Internet]. 2011;10(5):497–506. Available from. https://doi.org/10.1016/j.chom.2011.10.006.

    Article  CAS  Google Scholar 

  42. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol [Internet]. 2009;9(1):259 Available from: http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-9-259.

    Google Scholar 

  43. Hajishengallis G, Darveau R, Curtis M. The keystone pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 2016;28(2):146–58. https://doi.org/10.1016/j.smim.2016.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nih T, Working HMP. The NIH Human Microbiome Project. Genome Res [Internet]. 2009;19(12):2317–23 Available from: http://genome.cshlp.org/content/19/12/2317.full.pdf+html.

    Google Scholar 

  46. Huyghe A, Francois P, Charbonnier Y, Tangomo-Bento M, Bonetti EJ, Paster BJ, et al. Novel microarray design strategy to study complex bacterial communities. Appl Environ Microbiol. 2008;74(6):1876–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol. 1998;34(4):304–8.

    CAS  PubMed  Google Scholar 

  48. Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci Int J Oral Sci [Internet]. 2011;3(3):209–15 Available from: www.ijos.org.cn.

    Google Scholar 

  49. Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11(3):151–6.

    CAS  PubMed  Google Scholar 

  50. Morita E, Narikiyo M, Yano A, Nishimura E, Igaki H, Sasaki H, et al. Different frequencies of Streptococcus anginosus infection in oral cancer and esophageal cancer. Cancer Sci. 2003;94(6):492–6.

    CAS  PubMed  Google Scholar 

  51. Xie H, Rhodus NL, Griffin RJ, Carlis JV, Griffin TJ. A catalog of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics [Internet]. 2005;4(11):1826–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16103422.

    CAS  Google Scholar 

  52. Hooper SJ, Crean SJ, Lewis MAO, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol. 2006;44(5):1719–25.

    PubMed  PubMed Central  Google Scholar 

  53. Hooper SJ, Crean S, Fardy MJ, Lewis MAO, Spratt DA, Wade WG, et al. A molecular analysis of the bacteria present within oral squamous cell carcinoma Printed in Great Britain. J Med Microbiol. 2007;56(Pt 12):1651–9.

    CAS  PubMed  Google Scholar 

  54. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol [Internet]. 2012;12(1):1. Available from: BMC Microbiology.

  55. Fouad AF. Pyrosequencing as a tool for better understanding of human microbiomes. J Oral Microbiol. 2012;4:2297.

    Google Scholar 

  56. Pushalkar S, Mane SP, Ji X, et al. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol Med Microbiol. 2011;61(3):269–77. https://doi.org/10.1111/j.1574-695X.2010.00773.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26(11):1612–25. https://doi.org/10.1101/gr.201863.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato N, Kakuta M, Hasegawa T, et al. Metagenomic analysis of bacterial species in tongue microbiome of current and never smokers. npj Biofilms Microbiomes. 2020;6:11. https://doi.org/10.1038/s41522-020-0121-6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cyprian FS, Al-Antary N, Al Moustafa AE. HER-2/Epstein-Barr virus crosstalk in human gastric carcinogenesis: a novel concept of oncogene/oncovirus interaction. Cell Adhes Migr. 2018;12(1):1–4. https://doi.org/10.1080/19336918.2017.1330244.

    Article  CAS  Google Scholar 

  60. Jeon YK, Lee BY, Kim JE, Lee SS, Kim CW. Molecular characterization of Epstein-Barr virus and oncoprotein expression in nasopharyngeal carcinoma in Korea. Head Neck. 2004;26(7):573–83. https://doi.org/10.1002/hed.10370.

    Article  PubMed  Google Scholar 

  61. Tsai CL, Li HP, Lu YJ, et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res. 2006;66(24):11668–11,676. https://doi.org/10.1158/0008-5472.CAN-06-2194.

    Article  CAS  PubMed  Google Scholar 

  62. Shair KH, Schnegg CI, Raab-Traub N. Epstein-Barr virus latent membrane protein-1 effects on junctional plakoglobin and induction of a cadherin switch. Cancer Res. 2009;69(14):5734–42. https://doi.org/10.1158/0008-5472.CAN-09-0468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim Y, et al. Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics. 2017;7(174):313–4321. https://doi.org/10.7150/thno.21804.

    Article  CAS  Google Scholar 

  64. Karpiński TM. Role of oral microbiota in cancer development. Microorganisms. 2019;7(1):20. https://doi.org/10.3390/microorganisms7010020.

    Article  CAS  PubMed Central  Google Scholar 

  65. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85. https://doi.org/10.1038/nrc1046.

    Article  CAS  PubMed  Google Scholar 

  66. Gobert AP, Wilson KT. Human and Helicobacter pylori interactions determine the outcome of gastric diseases. Curr Top Microbiol Immunol. 2017;400:27–52. https://doi.org/10.1007/978-3-319-50,520-6_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral streptococci. Microbiol Spectr. 2018;6(5):https://doi.org/10.1128/microbiolspec.GPP3-0042-2018.

  68. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448. Published 2012 Nov 28. https://doi.org/10.3389/fphys.2012.00448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–44. https://doi.org/10.3322/caac.21398.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Senneby A, Davies J, Svensäter G, et al. Acid tolerance properties of dental biofilms in vivo. BMC Microbiol. 2017;17:165. https://doi.org/10.1186/s12866-017-1074-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Downes J, Wade WG. Peptostreptococcus stomatis sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2006;56(Pt 4):751–4. https://doi.org/10.1099/ijs.0.64041-0.

    Article  CAS  PubMed  Google Scholar 

  72. Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metastasis. 2009;26(1):19–34. https://doi.org/10.1007/s10585-008-9182-2.

    Article  PubMed  Google Scholar 

  73. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11. https://doi.org/10.1016/j.canlet.2008.02.026.

    Article  CAS  PubMed  Google Scholar 

  74. Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, et al. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci. 2018;10:32.

    PubMed  PubMed Central  Google Scholar 

  75. Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. Microbiology. 2013;159(159Pt 7):1437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marttila E, Bowyer P, Sanglard D, Uittamo J, Kaihovaara P, Salaspuro M, et al. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Mol Oral Microbiol. 2013;28:281–91.

    CAS  PubMed  Google Scholar 

  77. Meurman JH. Oral microbiota and cancer. J Oral Microbiol. 2010;2:https://doi.org/10.3402/jom.v2i0.5195

  78. Chocolatewala N, Chaturvedi P, Desale R. The role of bacteria in oral cancer. Indian J Med Paediatr Oncol. 2010;31(4):126–31. https://doi.org/10.4103/0971-5851.76195.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Homann N, Tillonen J, Meurman JH, et al. Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis. 2000;21(4):663–8. https://doi.org/10.1093/carcin/21.4.663.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12(4):361–73. https://doi.org/10.1007/s11684-018-0656-6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article  CAS  PubMed  Google Scholar 

  82. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [published correction appears in J Clin Invest. 2010 May 3;120(5):1786]. J Clin Invest. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The cancer microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression. J Oncol. 2019;2019:1253727. Published 2019 Oct 20. https://doi.org/10.1155/2019/1253727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Inaba H, Sugita H, Kuboniwa M, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol. 2014;16(1):131–45. https://doi.org/10.1111/cmi.12211.

    Article  CAS  PubMed  Google Scholar 

  85. Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol. 2019;11(1):1563410. Published 2019 Jan 9. https://doi.org/10.1080/20002297.2018.1563410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee J, Roberts JS, Atanasova KR, Chowdhury N, Han K, Yilmaz Ö. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, Porphyromonas gingivalis. Front Cell Infect Microbiol. 2017;7:493. Published 2017 Dec 1. https://doi.org/10.3389/fcimb.2017.00493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jotwani R, Eswaran SVK, Moonga S, Cutler CW. MMP-9/TIMP-1 Imbalance induced in human dendritic cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol. 2015;58(5):213–23.

    Google Scholar 

  88. Zeituni AE, Jotwani R, Carrion J, Cutler CW. Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. J Immunol. 2009;183(9):5694–704.

    CAS  PubMed  Google Scholar 

  89. Takahashi Y, Davey M, Yumoto H, Iii FCG, Genco CA. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells. Cell Microbiol. 2006;8(December 2005):738–57.

    CAS  PubMed  Google Scholar 

  90. Uitto V, Baillie D, Wu Q, Gendron R, Grenier D, Putnins EE, et al. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect Immun. 2005;73(2):1171–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Abassi YA, Rehn M, Ekman N, Alitalo K, Vuori K, YNC B. p130 Cas couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem. 2003;278(37):35636–43.

    CAS  PubMed  Google Scholar 

  92. Chau C, Chen K, Deng H, et al. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene. 2002;21:8817–29. https://doi.org/10.1038/sj.onc.1206032.

    Article  CAS  PubMed  Google Scholar 

  93. Fukata Y, Oshiro N, Kinoshita N, et al. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol. 1999;145(2):347–61. https://doi.org/10.1083/jcb.145.2.347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frödin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 1999;151(1–2):65–77. https://doi.org/10.1016/s0303-7207(99)00061-1.

    Article  PubMed  Google Scholar 

  95. Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. https://doi.org/10.1016/j.immuni.2015.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chatterjee S, Do Kang S, Alam S, et al. Tissue-specific gene expression during productive human papillomavirus 16 infection of cervical, foreskin, and tonsil epithelium. J Virol. 2019;93(17):e00915–9. Published 2019 Aug 13. https://doi.org/10.1128/JVI.00915-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen X, Bode AM, Dong Z, Cao Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB J. 2016;30(9):3001–10.

    CAS  PubMed  Google Scholar 

  99. Moustafa AE. Al. E5 and e6/e7 of high-risk HPVs cooperate to enhance cancer progression through EMT initiation. Cell Adhes Migr. 2015;9(5):392–3.

    Google Scholar 

  100. Al Moustafa AE, Al-Antary N, Aboulkassim T, Akil N, Batist G, Yasmeen A. Co-prevalence of Epstein–Barr virus and high-risk human papillomaviruses in Syrian women with breast cancer. Hum Vaccines Immunother. 2016;12(7):1936–9.

    Google Scholar 

  101. Broccolo F, Ciccarese G, Rossi A, Anselmi L, Drago F, Toniolo A. Human papillomavirus (HPV) and Epstein-Barr virus (EBV) in keratinizing versus non- keratinizing squamous cell carcinoma of the oropharynx. Infect Agent Cancer. 2018;13:32. Published 2018 Nov 9. https://doi.org/10.1186/s13027-018-0205-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta Mol basis Dis. 2008;1782(3):127–50.

    CAS  Google Scholar 

  103. Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 2014;26:13–21. https://doi.org/10.1016/j.semcancer.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  104. Kobayashi K, Hisamatsu K, Suzui N, Hara A, Tomita H, Miyazaki T. A review of HPV-related head and neck cancer. J Clin Med. 2018;7(9):241. Published 2018 Aug 27. https://doi.org/10.3390/jcm7090241.

    Article  CAS  PubMed Central  Google Scholar 

  105. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine [Internet]. 2012;30:F55–70. Available from. https://doi.org/10.1016/j.vaccine.2012.06.083.

    Article  CAS  Google Scholar 

  106. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384(2):324–34. https://doi.org/10.1016/j.virol.2008.11.017.

    Article  CAS  PubMed  Google Scholar 

  107. Mclaughlin-drubin ME, Münger K. The human papillomavirus E7 oncoprotein margaret. Virol 2009. 2010;384(2):335–44.

    Google Scholar 

  108. Suprynowicz FA, Disbrow GL, Krawczyk E, Simic V, Lantzky K, Schlegel R. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells [published correction appears in Oncogene. 2008 Nov 6;27(49):6396]. Oncogene. 2008;27(8):1071–8. https://doi.org/10.1038/sj.onc.1210725.

    Article  CAS  PubMed  Google Scholar 

  109. Kim SH, Juhnn YS, Kang S, et al. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell Mol Life Sci. 2006;63(7–8):930–8. https://doi.org/10.1007/s00018-005-5561-x.

    Article  CAS  PubMed  Google Scholar 

  110. Oh JM, Kim SH, Cho EA, Song YS, Kim WH, Juhnn YS. Human papillomavirus type 16 E5 protein inhibits hydrogen-peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells. Carcinogenesis. 2010;31(3):402–10. https://doi.org/10.1093/carcin/bgp318.

    Article  CAS  PubMed  Google Scholar 

  111. Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes. 2010;40(1):1–13. https://doi.org/10.1007/s11262-009-0412-8.

    Article  CAS  PubMed  Google Scholar 

  112. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Suppl 1):S7–S15. https://doi.org/10.1016/j.jcv.2004.12.006.

    Article  CAS  PubMed  Google Scholar 

  113. Magal SS, Jackman A, Ish-Shalom S, et al. Downregulation of Bax mRNA expression and protein stability by the E6 protein of human papillomavirus 16. J Gen Virol. 2005;86(Pt 3):611–21. https://doi.org/10.1099/vir.0.80453-0.

    Article  CAS  PubMed  Google Scholar 

  114. Thomas M, Laura R, Hepner K, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene. 2002;21(33):5088–96. https://doi.org/10.1038/sj.onc.1205668.

    Article  CAS  PubMed  Google Scholar 

  115. Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol. 2003;23(24):8970–81. https://doi.org/10.1128/mcb.23.24.8970-8981.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hashimoto T, Soeno Y, Maeda G, et al. Progression of oral squamous cell carcinoma accompanied with reduced E-cadherin expression but not cadherin switch. PLoS One. 2012;7(10):e47899. https://doi.org/10.1371/journal.pone.0047899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Faghihloo E, Sadeghizadeh M, Shahmahmoodi S, et al. Cdc6 expression is induced by HPV16 E6 and E7 oncogenes and represses E-cadherin expression. Cancer Gene Ther. 2016. https://doi.org/10.1038/cgt.2016.51.

  118. Zhang J, Burn C, Young K, et al. Microparticles produced by human papillomavirus type 16 E7-expressing cells impair antigen presenting cell function and the cytotoxic T cell response. Sci Rep. 2018;8:2373. https://doi.org/10.1038/s41598-018-20,779-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jung YS, Kato I, Kim HR. A novel function of HPV16-E6/E7 in epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2013 Jun;435(3):339–44. https://doi.org/10.1016/j.bbrc.2013.04.060.

    Article  CAS  PubMed  Google Scholar 

  120. Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr virus associated lymphomas and epithelia cancers in humans. J Cancer. 2020;11(7):1737–50. Published 2020 Jan 17. https://doi.org/10.7150/jca.37282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hau PM, Lung HL, Wu M, Tsang CM, Wong K-L. Mak NK and Lo KW (2020) Targeting Epstein-Barr virus in nasopharyngeal carcinoma. Front Oncol. 2020;10:600. https://doi.org/10.3389/fonc.2020.00600.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Münz C, Moormann A. Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol. 2008;18(6):381–7. https://doi.org/10.1016/j.semcancer.2008.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Middeldorp JM, Brink AATP, Adriaan JC, Brule D, Meijer CJLM. Pathogenic roles for Epstein Á Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol. 2003;45(1):1–36.

    PubMed  Google Scholar 

  124. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4(10):757–68. https://doi.org/10.1038/nrc1452.

    Article  CAS  PubMed  Google Scholar 

  125. Michelow P, Wright C, Pantanowitz L. A review of the cytomorphology of Epstein-Barr virus-associated malignancies. Acta Cytol. 2012;56(1):1–14. https://doi.org/10.1159/000334235.

    Article  PubMed  Google Scholar 

  126. Amarante MK, Watanabe MA. The possible involvement of virus in breast cancer. J Cancer Res Clin Oncol. 2009;135(3):329–37. https://doi.org/10.1007/s00432-008-0511-2.

    Article  PubMed  Google Scholar 

  127. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol [Internet]. 2012;22(2):144–53. Available from. https://doi.org/10.1016/j.semcancer.2012.01.004.

    Article  CAS  Google Scholar 

  128. Horikawa T, Yoshizaki T, Kondo S, Furukawa M, Kaizaki Y, Pagano JS. Epstein-Barr virus latent membrane protein 1 induces Snail and epithelial – mesenchymal transition in metastatic nasopharyngeal carcinoma. Br J Cancer [Internet]. 2011;104(7):1160–7. Available from. https://doi.org/10.1038/bjc.2011.38.

    Article  CAS  Google Scholar 

  129. Kong QL, Hu LJ, Cao JY, et al. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog. 2010;6(6):e1000940. Published 2010 Jun 3. https://doi.org/10.1371/journal.ppat.1000940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin Z, Wan X, Jiang R, et al. Epstein-Barr virus-encoded latent membrane protein 2A promotes the epithelial-mesenchymal transition in nasopharyngeal carcinoma via metastatic tumor antigen 1 and mechanistic target of rapamycin signaling induction. J Virol. 2014;88(20):11872–11,885. https://doi.org/10.1128/jvi.01867-14.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wang L, Tian WD, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer. 2014;120(3):363–72. https://doi.org/10.1002/cncr.28418.

    Article  CAS  PubMed  Google Scholar 

  132. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012;12(1):1.

    Google Scholar 

  133. Belstrøm D, Holmstrup P, Fiehn N-E, Kirkby N, Kokaras A, Paster BJ, et al. Salivary microbiota in individuals with different levels of caries experience. J Oral Microbiol ISSNOnline J J Oral Microbiol [Internet]. 2017;9(1):2000–297 Available from: http://www.tandfonline.com/action/journalInformation?journalCode=zjom20.

    Google Scholar 

  134. AlmståhI A, Wikström M, Stenberg I, Jakobsson A, Fagerberg-Mohlin B. Oral microbiota associated with hyposalivation of different origins. Oral Microbiol Immunol. 2003;18(1):1–8. https://doi.org/10.1034/j.1399-302x.2003.180101.x.

    Article  PubMed  Google Scholar 

  135. Lundmark A, Hu YOO, Huss M, Johannsen G, Andersson AF, Yucel-Lindberg T. Identification of salivary microbiota and its association with host inflammatory mediators in periodontitis. Front Cell Infect Microbiol. 2019;9:216. https://doi.org/10.3389/fcimb.2019.00216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the general institutional internal funding (Seed 2578) and the facilities provided for the study by VIT, Vellore.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and R.K.D. conceived the presented idea. S.C. collected the data and prepared the manuscript. R.K.D. reviewed the manuscript, validated the collected data, and supervised the study. S.C. and R.K.D. edited the manuscript. All authors discussed the data and contributed to the final manuscript.

Corresponding author

Correspondence to Raunak Kumar Das.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

This section is not applicable for this manuscript, as this is a review article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, S., Das, R.K. Dysbiosis of Oral Microbiota and Its Effect on Epithelial-Mesenchymal Transition: a Review. SN Compr. Clin. Med. 2, 2324–2335 (2020). https://doi.org/10.1007/s42399-020-00573-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-020-00573-w

Keywords

Navigation