Demographic and Basic Characteristics
Total of 143 patients hospitalized with confirmed COVID-19 to participating centers during the study period between March 11, 2020, and June 27, 2020 were included. Of them, 49 (34.3%) had underlying CVD including hypertension, coronary heart disease, rhythm disturbance or cardiomyopathy and 31 patients (21.7%) had cardiac injury as indicated by elevated hs-TNI levels and 112 patients (78.3%) had no elevation in hs-TNI recorded. Age of study population was 49.36 ± 15.32 years and 124 (86.7%) were male. Fever was the most common reported symptom (129 patients [84%]). Cough, shortness of breath, diarrhea, chest pain, and sore throat were presenting symptoms for 99 patients (69%); 76 patients (53%), 24 patients (17%), 21 patients (15%), and 15 patients (10%) respectively. Less commonly reported symptoms included: Nausea and/or vomiting (7 patients [5%]), headache (6 patients [4%]), rhinorrhea (6 patients [4%]), dysuria (2 patients [1%]), and altered mental status (1 patients [0.6%]).
Common co-existing conditions included diabetes mellitus (52 patients [36.4%]) and hypertension (46 patients [32.2%]). Obesity, which is defined as body mass index (BMI) > 30, was noted in 23 patients (16%). Of these 143 patients, 6 (4.2%) and 3 (2.1%) had coronary heart disease and cerebrovascular disease, respectively. The proportion of chronic heart failure, chronic renal failure, chronic obstructive pulmonary disease, smoking and cancer, was 4.2% (5 patients), 8.4% (12 patients), 7% (10 patients), 4.9% (7 patients), and 2% (3 patients), respectively. Table 1 summarizes these findings.
Table 1 Baseline characteristics (n = 143) Compared with patients without myocardial injury, patients with cardiac injury were older (median [range] age, 61 [33–89] years vs 44 [22–94] years; P < 0.0001). Fever, followed by cough, was the leading symptom in the both cohorts. Interestingly, chest pain as a presenting symptom was higher although not statistically significant comparing non-cardiac injury group to the cardiac injury group (15.3% vs 12.9%, P 0.749). Moreover, patients who developed cardiac injury compared with those without cardiac injury had significantly more comorbidities (Table 2) including: hypertension (19 [61.3%] vs 27 [24.1%], P < 0.0001), diabetes (17 [54.8%] vs 35 [31.3%], P 0.0155), dyslipidemia (6 [19.4%] vs 5 [4.5%], P 0.0059) cerebrovascular disease (3 [9.7%] vs 0 [0%], P < 0.001), chronic heart failure (5 [16.1%] vs 0 [0%], P < 0.00001), chronic obstructive pulmonary disease (6 [19.4%] vs 4 [3.6%], P 0.002). However, there was no difference in other comorbidities including chronic kidney disease (5 [16.1%] vs 7 [6.2%], P 0.078), coronary heart disease (2 [6.5%] vs 4 [3.6%], P 0.477), and obesity (7 [22.6%] vs 16 [14.3%], P 0.267). Cancer of any type was found in less than 4% of both cohorts with no statistical significant difference.
Table 2 Cardiac injury and COVID-19 (n = 143) Treatment, Complications, and Clinical Outcomes
Patients with cardiac injury had presented to hospital in shorter period from the onset of their symptoms compared with patients who did not develop cardiac injury (4.5 ± 3.4 vs 5.3 ± 3.2 days, P 0.0216). The majority of our cohort required invasive mechanical ventilation on admission (67 patients, 46.9%). Around quarter of patients in the study did not required oxygen support on admission; however, had other reason for admission.
The vast majority of study population received antibiotic (antibacterial) (139 [97.2%]). Other therapeutic interventions included antivirals (96 [68.5%]), glucocorticoids (55 [38.5%]), and convalescent plasma infusion (63 [44%]). Anti-interleukin drugs such as tocilizumab and anakinra were used in 48 (33.5%) and 3 (2%) patients respectively. Plasma exchange was used in 27 patients [18.8%]). Table 3 summarizes treatments and interventions.
Table 3 Treatment and interventions Notably, 19 patients (13.2%) from study population required renal replacement therapy. Overall, 75 patients (52.5%) had ARDS, and 34 patients (23.8%) had acute kidney injury during hospitalization. Other complications included electrolyte disturbance (11 [7.7%]), and anemia (16 [11.2%]). On follow-up, 24 patients (16.8%) died, 108 patients (75.5%) were discharged, and the rest (10 [7.0%]) remained hospitalized by the end of the study period. Compared with those without cardiac injury, patients with cardiac injury required more invasive mechanical ventilation (24 [77.4%] vs 43 [38.4%]; P 0.00012). The use of antibiotics (antibacterial) treatment (31 [100%] vs 108 [96.4%]), glucocorticoids (23 [74.2%] vs 32 [28.3%]), and antivirals (23 [74.2%] vs 75 [67.0%]) was also higher in patients with cardiac injury than in those without cardiac injury. Complications were more prevalent among patients with cardiac injury than those without cardiac injury; these included ARDS (27 [87%] vs 48 [42.9%]; P < 0.00001), acute kidney injury (21 [67.7%] vs 13 [11.6%]; P < 0.00001), drop in hemoglobin, or anemia (12 [38.7%] vs 4 [3.6%]; P < 0.00001). Figure 1 illustrates these findings.
Cardiac Events
We looked into cardiac events during the course of hospitalization of the study population as well as comparing these events in those with cardiac injury and those without, including arrhythmia and ST-elevation myocardial infarction. Tachy-arrhythmias were the most common rhythm disturbance reported. Atrial tachy-arrhythmia was seen in 4 (12.9%) patients with cardiac injury while only seen in 1 (0.9%) patient without documented cardiac injury. Ventricular arrhythmia developed in 1 (3.2%) patient in the cardiac injury group vs. 2 (1.8) patients in non-cardiac group. Brady-arrhythmia occurred in 3 (9.7%) in cardiac injury group compared with 6 (5.4%) in non-cardiac injury group. Out of patients who had cardiac injury, 2 patients (6.5%) presented with ST-elevation myocardial infraction.
Cardiac Injury and Mortality
The mortality rate was remarkably higher in patients with cardiac injury compared with those without cardiac injury (16 [53.3%] vs 8 [7.1%]; P < 0.00001).
Mortality of Patients with COVID-19 With/Without CVD and With/Without Elevated hs-TNI Levels
Further analysis of mortality in this retrospective cohort revealed that, out of 143 patients included in this study, 3.62% (3 of 83) with normal hs-TNI levels without underlying CVD, 17.24% (5 of 29) with normal hs-TNI levels with underlying CVD, 63.6% (7 of 11) with elevated hs-TNI levels without underlying CVD and 45% (9 of 20) with elevated hs-TNI levels with underlying CVD died during hospitalization. Figure 2 illustrates these findings.
Noteworthy, patients who have died in the elevated hs-TNI levels without underlying CVD group were younger compared with patients with elevated hs-TNI levels and underlying CVD; (age median 55.4 (33–76) vs 70.0 (53–80). Male gender was the predominant in the two groups with 1 female in each group. Interestingly, deceased patients in the elevated hs-TNI levels without underlying CVD group had higher D-dimer and LDH levels than deceased patients in the elevated hs-TNI level with underlying CVD group.