Skip to main content

Advertisement

Log in

Human Amniotic Membrane and Its Anti-cancer Mechanism: a Good Hope for Cancer Therapy

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

This review focuses on the probable anti-cancer mechanisms of human amniotic membrane (AM) that may be very helpful for ongoing cancer research activities with AM. A thorough search was conducted on PubMed for any published literature on the anti-cancer role of human AM using the key words, e.g., AM, function of AM, angiogenesis prevention, apoptosis induction by AM. No particular exclusion criteria were set. We selected resources from 1960 to 2018 with special focus on articles published during the last 7 years that revealed information regarding AM-derived factors and their specific functions to prevent cancer. Many studies suggest that human AM-derived epithelial stem cells (AM-hAECs) and mesenchymal stem cells (AM-hMSCs) secrete various factors, e.g., thrombospondin (TSP), tissue inhibitor metalloproteinase (TIMP), plasminogen activator inhibitors (PAI), IL-1 receptor antagonist (IL1RN), granulocyte monocyte-colony stimulating factor (GM-CSF), cytokines specially IL-6 and IL-10, various essential markers, and proteins which most predominantly increase the AM’s anti-cancer activity. This work gives an overview of the latest findings on AM function and evaluates its potential use in cancer treatment. Though various researches are being performed now on the anti-neoplastic properties of AM, the mechanism of these effects is not clear yet. Therefore, it has a great demand to unveil the mood of action of AM as to exert anti-cancer activity. From the meta-analysis of previous data, this review has pointed out an anti-cancer mechanism of AM that would help to use it as an anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM :

amniotic membrane

WHO :

World Health Organization

AM-hAECs :

AM-derived epithelial stem cells

AM-hMSCs :

AM-derived mesenchymal stem cells

TSP :

thrombospondin

TIMP :

tissue inhibitor metalloproteinases

PAI :

plasminogen activator inhibitors

IL1RN :

IL-1 receptor antagonist

GM-CSF :

granulocyte monocyte-colony stimulating factor

IL :

interleukin

HLA :

human leukocyte antigen

SLPI :

secretory leukocyte protease inhibitor

HGF :

hepatocyte growth factor

TGF :

tumor growth factor

bFGF :

basic fibroblast growth factor

KD :

kilo dalton

MMP :

matrix metalloproteinase

G0/G1 :

Gap0/Gap1

S Phase :

synthesis phase

IFN :

interferon

CDK :

cyclin-dependent kinases

MCM :

minichromosome maintenance complex

PCNA :

proliferating cell nuclear antigen

CDKN :

CDK inhibitor

CUL1 :

Cullin-1

pRB :

retinoblastoma protein

HSP :

heat shock protein

NF-kb :

nuclear factor kappa B

APAF-1 :

apoptotic protease activating factor-1.

References

  1. Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Damyanov CA, Maslev IK, Pavlov VS, Avramov L. Conventional treatment of cancer realities and problems. Annals of Comp and Alt Med. 2018;1(1):1–9.

    Google Scholar 

  3. Krishnamoorthy M, Prabhu A. Anticancer activitiy of Cynodon dactylon L . extract on ehrlich ascites carcinoma. J Environ Res Develop. 2011;5:551–7.

    Google Scholar 

  4. Chatterjee D, Sahu RK, Jha AK, Dwivedi J. Evaluation of antitumor activity of Cuscuta Reflexa Roxb ( Cuscutaceae ) against Ehrlich ascites carcinoma in Swiss albino mice. Trop J Pharm Res. 2011:447–54.

  5. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells : a review. Cancer Cell Int. 2007;11:1–11.

    Article  CAS  Google Scholar 

  6. Mamede AC, Guerra S, Laranjo M, Carvalho MJ, Oliveira RC, Gonçalves AC, et al. Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol. 2015;32(12):257.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed AU, Alexiades NG, Lesniak MS. The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther. 2011;12:546–52.

    Google Scholar 

  8. Moreau P, Avet-loiseau H, Harousseau J, Attal M. Current trends in autologous stem-cell transplantation for myeloma in the era of novel therapies. J Clin Oncol. 2011;29:1898–906.

    Article  PubMed  Google Scholar 

  9. Niknejad H, Khayat-khoei M, Peirovi H. Human amniotic epithelial cells induce apoptosis of cancer cells : a new anti-tumor therapeutic strategy. J Cytotherapy. 2014;16:33–40.

    Article  CAS  Google Scholar 

  10. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian M, et al. Properties of the amniotic membrane for potential use in tissue. Eur Cell Mater. 2008;15:88–99.

    Article  CAS  PubMed  Google Scholar 

  11. Seo JH, Kim YH, Kim JS. Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses. 2008;70:812–4.

    Article  CAS  PubMed  Google Scholar 

  12. Lacout A, Marcy P. Inhibition of MMPs might increase anticancer properties of amniotic epithelial cells. Med Hypotheses. 2012;78:690–1.

    Article  CAS  Google Scholar 

  13. Jiao H, Guan F, Yang B. Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2 / caspase pathways. Mol Biol Rep. 2012;39:467–73.

    Article  CAS  PubMed  Google Scholar 

  14. Magatti M, De MS, Vertua E, Parolini O. Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med. 2012;16:2208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pigeon J, River B. Treatment of second-degree burns with amniotic membranes. Can Med Assoc J. 1960;83:844–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant. 2014;4:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agarwal A, Shankar S, Singh G, et al. Pleiotropic properties of amniotic membrane for modulation of periodontal healing. Int J Dent Med Res. 2014;1:110–7.

    Google Scholar 

  18. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26:300–11.

    Article  PubMed  Google Scholar 

  19. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30:2–10.

    Article  CAS  PubMed  Google Scholar 

  20. Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg. 1995;48:477–8.

    Article  CAS  PubMed  Google Scholar 

  21. Halim AS, Khoo TL, Yussof SJM. Biologic and synthetic skin substitutes: an overview. Indian J PlastSurg. 2010;43:23–8.

    Article  Google Scholar 

  22. Trelford J, Trelford-Sauder M. The amnion in surgery, past and present. Am J Obstet Gynecol. 1979;134:833–45.

    Article  CAS  PubMed  Google Scholar 

  23. Hossain ML, Islam MM, Diba F, et al. The synergistic effect of AM and MO derived gel in burn and wound healing. Int J Complement Alt Med. 2018;11:21–6.

    Google Scholar 

  24. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2:1003–5.

    Article  CAS  PubMed  Google Scholar 

  25. Ravishanker R, Bath AS, Roy R. “ Amnion Bank ”— the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns. 2003;29:369–74.

    Article  CAS  PubMed  Google Scholar 

  26. Aziz NA, Nazly H, Norimah Y Human amniotic membrane: basic science and clinical application. 1st ed. World Scientific; 2017.

  27. Sharma SC, Bagree MM, Bhat AL, Banga BB, Singh MP. Amniotic membrane is an effective burn dressing material. Jpn J Surg. 1985;1(15):140–3.

    Article  Google Scholar 

  28. Bose B. Burn wound dressing with human amniotic membrane. Ann R Coll Surg. 1979;61:444.

    CAS  Google Scholar 

  29. Rocha SC, Baptista CJ. Biochemical properties of amniotic membrane. V: Mamede AC, Botelho MF, ur. Amniotic membrane. Netherlands: Springer; 2015;19–40.

  30. Kirschbaum S, Hernandez H. Use of amnion in extensive burns. In: 3rd International Congress in Plastic Surgery. Amsterdam: Excerpta Medica; 1963. p. 152–62.

    Google Scholar 

  31. Burgos H, Sergeant R. Lyophilized human amniotic membranes used in reconstruction of the ear. J R Soc Med. 1983;76:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saarela J, Ylikarpp R, Rehn M, Purmonen S. Comptete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol. 1998;16:319–28.

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Fu G, Fan Y, Shi C, Liu X, Xu G, et al. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposome- endostatin complex. World J Gastroenterol. 2003;9:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res. 2006;312:594–607.

    Article  CAS  PubMed  Google Scholar 

  35. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med. 2002;6:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hao Y, Ma DH, Hwang DG, Kim W, Ph D, Zhang F, et al. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52.

    Article  CAS  PubMed  Google Scholar 

  37. Walker AB, Cooney DR, Allen JE. Use of fresh amnion as burn dressing. J Pediatr Surg. 1977;12:391–5.

    Article  CAS  PubMed  Google Scholar 

  38. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases : evolution , structure and function. Biochim Biophys Acta. 2000;1477:267–83.

    Article  CAS  PubMed  Google Scholar 

  39. Jennifer CCand Frank CC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res 2009: 345320.

  40. Rerolle JP, Rehertig A, Nguyen G, Srayer JDAnd Rondeau EP. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int. 2000;58:1841–50.

    Article  CAS  PubMed  Google Scholar 

  41. Matsuo Y, Sawai H, Xu D, Ochi N, Yasuda A, Takahashi H, et al. IL-1 a secreted by colon cancer cells enhances angiogenesis : the relationship between IL-1 a release and tumor cells ’ potential for liver metastasis. J Surg Oncol. 2009;99:361–7.

    Article  CAS  PubMed  Google Scholar 

  42. Matsuo Y, Sawai H, Ochi N, Yasuda A, Takahashi H, Funahashi H, et al. Interleukin-1alpha secreted by pancreatic cancer cells promotes angiogenesis and its therapeutic implications. J Surg Res. 2009;153:274–81.

    Article  CAS  PubMed  Google Scholar 

  43. Ma J, Sawai H, Matsuo Y, Ochi N, et al. Interleukin-1α enhances angiogenesis and is associated with liver metastatic potential in human gastric cancer cell lines. J Surg Res. 2008;204:197–204.

    Article  CAS  Google Scholar 

  44. Mishra S, Singh S. Human amniotic membrane: can it be a ray of hope in periodontal regeneration? Indian J Dent Res. 2014;3:118–21.

    Google Scholar 

  45. La E, Rundhaug JE, Fischer SM. Role of intracellular interleukin-1 receptor antagonist in skin carcinogenesis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 2001; 223:218–23.

  46. Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res. 2006;12:1088–97.

    Article  CAS  PubMed  Google Scholar 

  47. Dickson MA, Cancer C, Published R, May O. Molecular pathways : CDK4 inhibitors for cancer therapy. Clin Cancer Res. 2014;20:3379–83.

    Article  CAS  PubMed  Google Scholar 

  48. Giuffrida D, Rogers IM, Nagy A, Calogero AE, Brown TJ, Casper RF. Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif. 2009;42(6):788–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  50. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G l cyclin-dependent kinases. Cell. 1993;75:805–16.

    Article  CAS  PubMed  Google Scholar 

  51. Guo W, Shang F, Liu Q, Urim L, West-mays J, Taylor A. Differential regulation of components of the ubiquitin-proteasome pathway during Lens cell differentiation. Invest Ophthalmol Vis Sci. 2004;45:1194–201.

    Article  PubMed  Google Scholar 

  52. Horne MC, Donaldson KL, Goolsby GL, Tran D, Mulheisen M, Hell JW, et al. Cyclin G2 is up-regulated during growth inhibition and B cell antigen receptor-mediated cell cycle arrest. J Biol Chem. 1997;272:12650–61.

    Article  CAS  PubMed  Google Scholar 

  53. Bennin DA, Don ASA, Brake T, Mckenzie JL, Ortiz L, Anna A, et al. Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B ‘ subunits in active complexes and induces nuclear aberrations and a G 1 / S phase cell cycle arrest. J Biol Chem. 2002;277:27449–67.

    Article  CAS  PubMed  Google Scholar 

  54. Martínez-gac L, Marque M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors : novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004;24:2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wirt SE, Sage J. p107 in the public eye : an Rb understudy and more. Cell Div. 2010;5:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004;2010206:149–57.

    Article  CAS  Google Scholar 

  57. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Publ Group. 2010;10:537–49.

    CAS  Google Scholar 

  58. Pearl LH, Prodromou C, Workman P. The Hsp90 molecular chaperone : an open and shut case for treatment. Biochem J. 2008;410:439–53.

    Article  CAS  PubMed  Google Scholar 

  59. Eskew JD, Sadikot T, Morales P, Duren A, Dunwiddie I, Swink M, et al. Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer. 2011;11:468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarkar S, Dutta D, Samanta SK, Bhattacharya K, Pal BC, Li J, et al. Oxidative inhibition of Hsp90 disrupts the super-chaperone complex and attenuates pancreatic adenocarcinoma in vitro and in vivo. Int J Cancer J Int du Cancer. 2013;132(3):695–706.

    Article  CAS  Google Scholar 

  61. Graham B, Curry J, Smyth T, Fazal L, Feltell R, Harada I, et al. The heat shock protein 90 inhibitor, AT13387, displays a long duration of action in vitro and in vivo in non-small cell lung cancer. Cancer Sci. 2012;103(3):522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rajan A, Kelly RJ, Trepel JB, Kim YS, Alarcon SV, Kummar S, et al. A phase I study of PF-04929113 ( SNX-5422 ), an orally bioavailable heat shock protein 90 inhibitor , in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res. 2011;17:6831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sequist LV, Gettinger S, Senzer NN, Martins RG, Ja PA, Gray JE, et al. Activity of IPI-504 , a novel heat-shock protein 90 inhibitor , in patients with molecularly defined non – small-cell lung cancer. J Clin Oncol. 2010;28:4953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V, et al. Phase I pharmacokinetic and pharmacodynamic study of LAQ824 , a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile , in patients with advanced solid tumors. Clin Cancer Res. 2008;14:6663–73.

    Article  CAS  PubMed  Google Scholar 

  65. Lancet JE, Gojo I, Burton M, Quinn M, Tighe SM, Kersey K, et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin ( KOS-1022, 17-DMAG ) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia. 2010;24:699–705.

    Article  CAS  PubMed  Google Scholar 

  66. Al SL, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol. 2008;141:483–93.

    Article  CAS  Google Scholar 

  67. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem. 2000;275:10519–26.

    Article  CAS  PubMed  Google Scholar 

  68. Dias S, Shmelkov SV, Lam G, Rafii S, Dias S, Shmelkov SV, et al. VEGF 165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood. 2002;99:2532–40.

    Article  CAS  PubMed  Google Scholar 

  69. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, et al. Negative regulation of cytochrome c -mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19:4310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brunelle JK, Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 2009;122:437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zander T, Kraus A, Grommes C, Schlegel U, Feinstein D, Klockgether T, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem. 2002;81:1052–60.

    Article  CAS  PubMed  Google Scholar 

  72. Yin C, Knudson MC, Korsmeyer JS, Dyke VT. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature. 1997;385:637–40.

    Article  CAS  PubMed  Google Scholar 

  73. Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226:352–64.

    Article  CAS  PubMed  Google Scholar 

  74. Shao C, Sima J, Zhang SX, Jin J, Reinach P, Wang Z, et al. Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci. 2004;45:1758–62.

    Article  PubMed  Google Scholar 

  75. Mahgoub MA, Ammar A, Fayez M, Edris A, Hazem A, Akl M, et al. Neovascularization of the amniotic membrane as a biological immune barrier. Transplant Proc. 2004;36:1194–8.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang A, Li C, Gao Y, et al. In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea. 2006;25:36–40.

    Article  Google Scholar 

  77. Kobayashi N, Kabuyama Y, Sasaki S, Kato K, Homma Y. Suppression of corneal neovascularization by culture supernatant of human amniotic cells. Cornea. 2002;21:62–7.

    Article  PubMed  Google Scholar 

  78. Ma DH, Yao JY, Yeh LK, et al. In vitro antiangiogenic activity in ex vivo expanded human limbocorneal epithelial cells cultivated on human amniotic membrane. Invest Ophthalmol Vis Sci. 2004;45:2586–95.

    Article  PubMed  Google Scholar 

  79. Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N. Immunological characteristics of amniotic epithelium. Cornea. 2006;25:53–8.

    Article  Google Scholar 

  80. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46:900–7.

    Article  PubMed  Google Scholar 

  81. Li W, He H, Kawakita T, Espana EM, Tseng SC. Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Exp Eye Res. 2006;82:282–92.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou S, Chen J, Feng J. The effects of amniotic membrane on polymorphonuclear cells. Chin Med J. 2003;116:788–90.

    PubMed  Google Scholar 

  83. Kim JC, Tseng SC. The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol. 995(9):32–46.

  84. Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539–46.

    CAS  PubMed  Google Scholar 

  85. Runic R, Lockwood CJ, LaChapelle L, et al. Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab. 1998;83:660–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liakat Hossain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Any of the authors did not use human or animal sample to perform the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, L., Siddika, A., Adnan, M.H. et al. Human Amniotic Membrane and Its Anti-cancer Mechanism: a Good Hope for Cancer Therapy. SN Compr. Clin. Med. 1, 487–495 (2019). https://doi.org/10.1007/s42399-019-00090-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00090-5

Keywords

Navigation