Skip to main content

Epigenetic Alterations in Juvenile Spondyloarthritis Patients: a Preliminary Study of Selected Genes Promoter Methylation and Silencing

Abstract

Juvenile spondyloarthritis (jSpA) is a complex disease with both genetic and environmental factors contributing to etiology. Multiple studies have shown that epigenetic mechanisms could link the environment and gene expression and thus provide a potential explanation for external contribution in the pathogenesis of numerous diseases, including rheumatic. Previously obtained gene signatures in jSpA patients revealed distinctive expression of important immune-related genes, though the mechanism(s) responsible for those alterations remained unknown. The purpose of this study was to evaluate the methylation levels of the TLR4, CXCR4, NLRP3, and PTPN12 gene promoter, along with the expression of several non-coding microRNAs (miR-150, miR-146a, miR-181a, and miR-223) in jSpA patients. Peripheral blood samples were obtained from 19 patients newly diagnosed with jSpA according to ILAR classification criteria for enthesitis-related arthritis (ErA) and seven gender- and age-matched subjects without any symptoms or signs of inflammatory disease. The expression of specific microRNAs was analyzed using qRT-PCR with predeveloped microRNA assays. DNA promoter region methylation status of selected genes was assessed by methylated DNA immunoprecipitation (MeDIP) analysis. Fold enrichment of immunoprecipitated DNA differed significantly for NLRP3 promoter site, while the expression analysis of selected microRNAs showed no significant difference in fold change between jSpA patients and healthy controls. The results indicated that epigenetic modifications in the initial phase of the disease could be responsible for some of the expression alterations in jSpA patients. Since NLRP3 has a crucial role in inflammasome assembly and inflammasomes have been shown to shape microbiota, it is tempting to assume that dysbiosis in jSpA patients can at least partially be explained by reduced NLRP3 expression due to hypermethylation, stressing for the first time the epigenetic contribution to jSpA pathophysiology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Harjaček M, Lamot L, Tambić Bukovac L, Vidović M, Joos R. Juvenile Spondyloarthritis. In: Harjaček M, editor. Challenges in rheumatology; 2011.

    Chapter  Google Scholar 

  2. Nigrovic PA, Raychaudhuri S, Thompson SD. Genetics and the classification of arthritis in adults and children. Arthritis Rheum. 2017;70:7–17. https://doi.org/10.1002/art.40350.

    Article  Google Scholar 

  3. Gmuca S, Weiss PF. Juvenile spondyloarthritis. Curr Opin Rheumatol. 2015;27(4):364–72. https://doi.org/10.1097/BOR.0000000000000185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tse SM, Laxer RM. New advances in juvenile spondyloarthritis. Nat Rev Rheumatol. 2012;8(5):269–79. https://doi.org/10.1038/nrrheum.2012.37.

    Article  CAS  PubMed  Google Scholar 

  5. Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol. 2014;57(1):2–11. https://doi.org/10.1016/j.molimm.2013.06.013.

    Article  CAS  Google Scholar 

  6. Reveille JD. Genetics of spondyloarthritis--beyond the MHC. Nat Rev Rheumatol. 2012;8(5):296–304. https://doi.org/10.1038/nrrheum.2012.41.

    Article  CAS  PubMed  Google Scholar 

  7. Barnes MG, Aronow BJ, Luyrink LK, Moroldo MB, Pavlidis P, Passo MH, et al. Gene expression in juvenile arthritis and spondyloarthropathy: pro-angiogenic ELR+ chemokine genes relate to course of arthritis. Rheumatology (Oxford). 2004;43(8):973–9. https://doi.org/10.1093/rheumatology/keh224.

    Article  CAS  Google Scholar 

  8. Barnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(7):2102–12. https://doi.org/10.1002/art.24601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Myles A, Tuteja A, Aggarwal A. Synovial fluid mononuclear cell gene expression profiling suggests dysregulation of innate immune genes in enthesitis-related arthritis patients. Rheumatology (Oxford). 2012;51(10):1785–9. https://doi.org/10.1093/rheumatology/kes151.

    Article  CAS  Google Scholar 

  10. Lamot L, Borovecki F, Tambic Bukovac L, Vidovic M, Perica M, Gotovac K, et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis. PLoS One. 2014;9(12):e115416. https://doi.org/10.1371/journal.pone.0115416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato M, Yasuda S, Atsumi T. The role of genetics and epigenetics in rheumatic diseases: are they really a target to be aimed at? Rheumatol Int. 2018;38(8):1333–8. https://doi.org/10.1007/s00296-018-4026-0.

    Article  CAS  PubMed  Google Scholar 

  12. Chavez-Valencia RA, Chiaroni-Clarke RC, Martino DJ, Munro JE, Allen RC, Akikusa JD, et al. The DNA methylation landscape of CD4(+) T cells in oligoarticular juvenile idiopathic arthritis. J Autoimmun. 2018;86:29–38. https://doi.org/10.1016/j.jaut.2017.09.010.

    Article  CAS  PubMed  Google Scholar 

  13. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63. https://doi.org/10.1038/nature02625.

    Article  CAS  PubMed  Google Scholar 

  14. Illingworth RS, Bird AP. CpG islands--‘a rough guide’. FEBS Lett. 2009;583(11):1713–20. https://doi.org/10.1016/j.febslet.2009.04.012.

    Article  CAS  PubMed  Google Scholar 

  15. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13. https://doi.org/10.1038/321209a0.

    Article  CAS  PubMed  Google Scholar 

  16. Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev. 2017;2(1):33–45. https://doi.org/10.1080/23808993.2017.1284557.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34. https://doi.org/10.1038/ncb0309-228.

    Article  CAS  PubMed  Google Scholar 

  18. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39. https://doi.org/10.1038/nrm2632.

    Article  CAS  PubMed  Google Scholar 

  19. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P, et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol. 1998;25(10):1991–4.

    CAS  PubMed  Google Scholar 

  20. Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. 2019;10:276. https://doi.org/10.3389/fimmu.2019.00276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gracey E, Dumas E, Yerushalmi M, Qaiyum Z, Inman RD, Elewaut D. The ties that bind: skin, gut and spondyloarthritis. Curr Opin Rheumatol. 2019;31(1):62–9. https://doi.org/10.1097/BOR.0000000000000569.

    Article  PubMed  Google Scholar 

  22. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13(2):148–59. https://doi.org/10.1038/cmi.2015.95.

    Article  CAS  PubMed  Google Scholar 

  23. Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36. https://doi.org/10.3389/fimmu.2017.00036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Dong R, Zheng S. Roles of the inflammasome in the gutliver axis (review). Mol Med Rep. 2019;19(1):3–14. https://doi.org/10.3892/mmr.2018.9679.

    CAS  Article  PubMed  Google Scholar 

  25. Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 2016;7:1081. https://doi.org/10.3389/fmicb.2016.01081.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol. 2017;13(10):593–605. https://doi.org/10.1038/nrrheum.2017.147.

    Article  CAS  PubMed  Google Scholar 

  27. Ciechomska M, O'Reilly S. Epigenetic modulation as a therapeutic prospect for treatment of autoimmune rheumatic diseases. Mediat Inflamm. 2016;2016:9607946. https://doi.org/10.1155/2016/9607946.

    Article  CAS  Google Scholar 

  28. Tano N, Kim HW, Ashraf M. microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One. 2011;6(10):e23114. https://doi.org/10.1371/journal.pone.0023114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quaranta MT, Olivetta E, Sanchez M, Spinello I, Paolillo R, Arenaccio C, et al. miR-146a controls CXCR4 expression in a pathway that involves PLZF and can be used to inhibit HIV-1 infection of CD4(+) T lymphocytes. Virology. 2015;478:27–38. https://doi.org/10.1016/j.virol.2015.01.016.

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Charbonneau C, Wei L, Chen Q, Terek RM. miR-181a targets RGS16 to promote chondrosarcoma growth, angiogenesis, and metastasis. Mol Cancer Res. 2015;13(9):1347–57. https://doi.org/10.1158/1541-7786.MCR-14-0697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189(8):4175–81. https://doi.org/10.4049/jimmunol.1201516.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Bai X, Song Q, Fan F, Hu Z, Cheng G, et al. miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int J Mol Sci. 2015;16(10):24965–82. https://doi.org/10.3390/ijms161024965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jagoo M, He F, Peng J, Yin F. Acute meningitis in rats is associated with decreased levels of miR132 and miR146a. Cent Eur J Immunol. 2014;39(3):316–22. https://doi.org/10.5114/ceji.2014.45941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He YZ, Lu RF, Zhu C, Hua JY. Qian Five Rhinoceros Gindeng (QFRG) protects against development of immune thrombocytopenia via miR-181a inhibition of TLR-4 expression. Int J Clin Exp Med. 2015;8(5):6986–93.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Funding

This work was completely funded by the Ministry of Science, Education and Sports of the Republic of Croatia by grant 108-1083107-0351 (www.mzos.hr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovro Lamot.

Ethics declarations

Ethical Approval

The study protocol was in compliance with the Helsinki Declaration and was approved by the Sestre milosrdnice University Hospital Center Institutional Review Board (IRB).

Informed Consent

After being informed of the aims and procedures of the study, parents of all the participants, as well as the children older than 12 years, signed an informed consent prior to blood collection.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamot, L., Blažeković, A., Jerčić, K.G. et al. Epigenetic Alterations in Juvenile Spondyloarthritis Patients: a Preliminary Study of Selected Genes Promoter Methylation and Silencing. SN Compr. Clin. Med. 1, 496–501 (2019). https://doi.org/10.1007/s42399-019-00070-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00070-9

Keywords

  • Juvenile spondyloarthritis
  • jSpA
  • Enthesitis-related arthritis
  • ErA
  • Epigenetics
  • DNA promoter methylation
  • microRNA