Pulse Physiology Engine: an Open-Source Software Platform for Computational Modeling of Human Medical Simulation

Abstract

The Pulse Physiology Platform is an open-source software application designed to enable accurate and consistent, real-time physiologic simulations for improved medical training and clinical decision-making tools. The platform includes a physiology engine comprised of well-validated lumped-parameter models, differential equations representing feedback mechanisms, and a pharmacokinetic/pharmacodynamic model. The platform also includes a common data model for standard model and data definitions and a common software interface for engine control and robust physics-based circuit and transport solvers. The Pulse Platform has been incorporated into a number of commercial, research, and academic tools for medical simulation. Significance: The Pulse Platform is an innovative, well-validated, open-source tool for medical modeling and simulation in the training and clinical decision-making field.

The Pulse Physiology Platform includes a common software interface, a common data model, and the Pulse Physiology Engine. This platform supports a modular, extensible architecture for real-time simulations of the human physiology with validated physics-based computational physiology models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Committee on Pediatric Emergency Medicine. Patient safety in the pediatric emergency care setting. Pediatrics. 2007;120(6):1367–75.

  2. 2.

    Henneman EA, Cunningham H. Using clinical simulation to teach patient safety in an acute/critical care nursing course. Nurse Educ. 2005;30(4):172–7.

    Article  PubMed  Google Scholar 

  3. 3.

    Holcomb JB, et al. Evaluation of trauma team performance using an advanced human patient simulator for resuscitation training. J Trauma. 2002;52(6):1076–8.

    Article  Google Scholar 

  4. 4.

    Lai F, Entin E, Dierks M, Raemer D, Simon R. Designing simulation-based training scenarios for emergency medical first responders. Proc Hum Factors Ergon Soc Annu Meet. 2004;48(15):1670–4.

    Article  Google Scholar 

  5. 5.

    Ricks J, Commander NTTC, Medical Simulation for Trauma Care. Combat and Casualty Care (tacticaldefensemedia.com). 2016 :16–17.

  6. 6.

    Calkins MAJMD, Robinson LTTD. Combat trauma airway management: endotracheal intubation versus laryngeal mask airway versus combitube use by Navy SEAL and Reconnaissance combat corpsmen. J Trauma Acute Care Surg. 1999;46(5):927–32.

    Article  CAS  Google Scholar 

  7. 7.

    Barela TP. Mannequins help inprove casualty care. Hurlburt Field: US Air Force News; 2006.

    Google Scholar 

  8. 8.

    Steadman RH, Coates WC, Huang YM, Matevosian R, Larmon BR, McCullough L, et al. Simulation-based training is superior to problem-based learning for the acquisition of critical assessment and management skills. Crit Care Med. 2006;34(1):151–7.

  9. 9.

    Adler MD, Trainor JL, Siddall VJ, McGaghie WC. Development and evaluation of high-fidelity simulation case scenarios for pediatric resident education. Ambul Pediatr. 2007;7(2):182–6.

    Article  PubMed  Google Scholar 

  10. 10.

    Eppich WJ, Adler MD, McGaghie WC. Emergency and critical care pediatrics: use of medical simulation for training in acute pediatric emergencies. Curr Opin Pediatr. 2006;18(3):266–71.

    Article  PubMed  Google Scholar 

  11. 11.

    Fehr JJ, Boulet JR, Waldrop WB, Snider R, Brockel M, Murray DJ. Simulation-based assessment of pediatric anesthesia skills. Anesthesiology: J Am Soc Anesthesiol. 2011;115(6):1308–15.

  12. 12.

    “Pulse Physiology Engine.” [Online]. Available: https://physiology.kitware.com/. [Accessed: 07-Aug-2017].

  13. 13.

    “Welcome to BioGears!” [Online]. Available: https://biogearsengine.com/. [Accessed: 07-Aug-2017].

  14. 14.

    Hester R, Brown A, Husband L, Iliescu R, Pruett WA, Summers RL, et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front Physiol. 2011;2:12.

  15. 15.

    “CAE Healthcare.” [Online]. Available: https://caehealthcare.com/patient-simulation. [Accessed: 07-Aug-2017].

  16. 16.

    “HumMod | The best, most complete, mathematical model of human physiology ever created.” [Online]. Available: http://hummod.org/. [Accessed: 07-Aug-2017].

  17. 17.

    Brown R, McIlwain S, Willson B, Hackett M. Enhancing Combat Medic training with 3D virtual environments. In: 2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH). IEEE; 2016. pp. 1–7.

  18. 18.

    Clipp RB, Scott G HumanSim: a physiology engine for the simulation of anesthesia/anaphylaxis training. in Military Health Research symposium 2012, 2012.

  19. 19.

    Lerant AA, Hester RL, Coleman TG, Phillips WJ, Orledge JD, Murray WB. Preventing and treating hypoxia: using a physiology simulator to demonstrate the value of pre-oxygenation and the futility of hyperventilation. Int J Med Sci. 2015;12(8):625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    “CAE PediaSim.” [Online]. Available: https://caehealthcare.com/patient-simulation/pediasim. [Accessed: 18-Jul-2017].

  21. 21.

    “SimVascular.” [Online]. Available: http://simvascular.github.io/. [Accessed: 05-Dec-2017].

  22. 22.

    “SimTK: OpenSim: Project Home.” [Online]. Available: https://simtk.org/projects/opensim. [Accessed: 05-Dec-2017].

  23. 23.

    Abdi M, Karimi A, Navidbakhsh M, Pirzad Jahromi G, Hassani K. A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system. Int J Numer Model Electron Networks, Devices Fields. 2015;28(3):346–57.

    Article  Google Scholar 

  24. 24.

    Liang F, Liu H. A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2005;48(4):484–93.

  25. 25.

    Liang F, Liu H. A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2005;48(4):484–93.

    Article  Google Scholar 

  26. 26.

    Olufsen MS, Nadim A. On deriving lumped models for blood flow and pressure in the systemic arteries. Math Biosci Eng. 2004;1(1):61–80.

    Article  PubMed  Google Scholar 

  27. 27.

    Segers P, Stergiopulos N, Westerhof N, Wouters P, Kolh P, Verdonck P. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Eng Math. 2003;47(3/4):185–99.

    Article  Google Scholar 

  28. 28.

    Shim EB, Sah JY, Youn CH. Mathematical modeling of cardiovascular system dynamics using a lumped parameter method. Jpn J Physiol. 2004;54(54):545–53.

    Article  PubMed  Google Scholar 

  29. 29.

    Abram SR, Hodnett BL, Summers RL, Coleman TG, Hester RL. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education. Adv Physiol Educ. 2007;31(2):202–10.

  30. 30.

    Hester R, Summers R, Iliescu R, Coleman T. HumMod: An integrative model of integrative biomedicine. Orlando: I/ITSEC; 2010.

    Google Scholar 

  31. 31.

    Gebremichael Y et al. Integration of a spontaneous respiratory driver with blood gas feedback into BioGears, an apen-source, whole-body physiology model. In: Summer Biomechanics, Bioengineering, and Biotransport Conference, 2015.

  32. 32.

    Swarm ZM et al. Modeling renal behavior and control in BioGears. In: Medicine meets virtual reality conference, 2016.

  33. 33.

    Enquobahrie A, et al. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit. J Digit Imaging. 2007;20(Suppl 1):21–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Olufsen MS, Nadim A, Lipsitz LA. Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Phys Regul Integr Comp Phys. 2002;282(2):R611–22.

    CAS  Google Scholar 

  35. 35.

    Ottesen J, Olufsen M, Larsen J. Applied mathematical models in human physiology. Denmark: Roskilde University; 2006.

    Google Scholar 

  36. 36.

    Clipp RB et al. Integration of a baroreflex model into a whole body physiology engine. In: Summer Biomechanics, Bioengineering, and Biotransport Conference, 2016.

  37. 37.

    Khalil F, Läer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol. 2011;2011:907461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Metoyer R et al. Multiscale simulation of insults and interventions: the BioGears showcase scenarios. In: Medicine meets virtual reality conference, 2016.

  39. 39.

    Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  Google Scholar 

  40. 40.

    Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  Google Scholar 

  41. 41.

    Huisinga W, Solms A, Fronton L, Pilari S. Modeling interindividual variability in physiologically based pharmacokinetics and its link to mechanistic covariate modeling. CPT Pharmacometrics Syst Pharmacol. 2012;1(September):e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2012;32(3–4):1–277.

    Google Scholar 

  43. 43.

    Rosenbaum SE, editor. Basic pharmacokinetics and pharmacodynamics: An integrated textbook and computer simulations: John Wiley & Sons; 2016.

  44. 44.

    Vladimirescu A. The SPICE book: John Wiley & Sons, Inc.; 1994.

  45. 45.

    “ngSPICE.” [Online]. Available: http://ngspice.sourceforge.net/.

  46. 46.

    Riggs DS. Control theory and physiological feedback mechanisms. Huntington: Robert E. Krieger Publishing Company; 1976.

    Google Scholar 

  47. 47.

    Chung-Wen H, Ruehli A, Brennan P. The modified nodal approach to network analysis. IEEE Trans Circuits Syst. 1975;22(6):504–9.

    Article  Google Scholar 

  48. 48.

    Nic M, Jirat J, Kosata AJ, McNaught A. IUPAC compendium of chemical terminology. Research Triangle Park, NC, 2009.

  49. 49.

    Martin K, Hoffman B. Mastering CMake version 3.1. Kitware Inc, 2015.

  50. 50.

    “Respiratory Methodology.” [Online]. Available: https://physiology.kitware.com/_respiratory_methodology.html. [Accessed: 26-Sep-2017].

  51. 51.

    “Cardiovascular Methodology.” [Online]. Available: https://physiology.kitware.com/_cardiovascular_methodology.html. [Accessed: 26-Sep-2017].

  52. 52.

    Hosomi H, Sagawa K. Effect of pentobarbital anesthesia on hypotension after 10% hemorrhage in the dog. Am J Phys. 1979;236(4):H607–12.

    CAS  Google Scholar 

  53. 53.

    Xie H, Wang X, Liu G, Wang G. Analgesic effects and pharmacokinetics of a low dose of ketamine preoperatively administered epidurally or intravenously. Clin J Pain. 2003;19(5):317–22.

    Article  PubMed  Google Scholar 

  54. 54.

    Shankaran H, Adeshina F, Teeguarden JG. Physiologically-based pharmacokinetic model for fentanyl in support of the development of provisional advisory levels. Toxicol Appl Pharmacol. 2013;273(3):464–76.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Murray MJ, Edward Morgan G Jr., Mikhail MS. Clinical Anesthesiology. Lange Medical. 4th ed. Books/McGraw-Hill; 2006.

  56. 56.

    Quammen CW, et al. The virtual pediatric airways workbench. Stud Health Technol Inform. 2016;220:295–300.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Potter L, Arikatla S, Bray A, Webb J, Enquobahrie A. Physiology informed virtual surgical planning: a case study with a virtual airway surgical planner and BioGears. In: Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling (Vol. 10135). International Society for Optics and Photonics; 2017. p. 101351T.

  58. 58.

    Gessa F, Asare P, Clipp RB, Bray A, Poler M. Towards a test and validation framework for closed-loop physiology management systems for critical and perioperative care. Medical cyber physical systems workshop, 2018. Cyber-Physical Systems Week 2018. Porto, Portugal.

  59. 59.

    Gilkes CE, Whitfield PC. Intracranial pressure and cerebral blood flow. Surgery. 2007;25(12):530–5.

    Google Scholar 

  60. 60.

    Lee HS, Yoon SH. Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: New understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow. Med Hypotheses. 2009;72(2):174–7.

  61. 61.

    Oswal A, Toma AK. Intracranial pressure and cerebral haemodynamics. Anaesth Intensive Care Med. 2017;18(5):259–63.

    Article  Google Scholar 

  62. 62.

    Partington T, Farmery A. Intracranial pressure and cerebral blood flow. Anaesth Intensive Care Med. 2014;15(4):189–94.

    Article  Google Scholar 

  63. 63.

    Shardlow E, Jackson A. Cerebral blood flow and intracranial pressure. Anaesth Intensive Care Med. 2011;12(5):220–3.

    Article  Google Scholar 

  64. 64.

    Kovatchev BP, Breton M, Dalla Man C, Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. 2009: 44–55.

  65. 65.

    Jiang Z, Pajic M, Connolly A, Dixit S, Mangharam R. Real-time heart model for implantable cardiac device validation and verification. In: 2010 22nd Euromicro Conference on Real-Time Systems. IEEE; 2010. p. 239–48.

  66. 66.

    Bauman EB. Game-based teaching and simulation in nursing and health care. New York: Springer Publishing Company, LLC; 2013.

    Google Scholar 

Download references

Acknowledgements

We would like to thank our early team that worked on the BioGears engine, the precursor to Pulse. We would also like to thank our collaborators on the Case Studies, including Jared Vicory and Cory Qualmann of Kitware, Lucas Potter of Old Dominion University, Michael Messer, James Tiller, Jr., Heidi Jansje Collins, and Catherine MacAllister of the University of North Carolina—Chapel Hill, and Farooq Gessa of Bucknell University. We would also like to thank Matt Pang of Entropic for his contribution to repository for compiling on ARM systems.

Funding

Initial work on the BioGears Engine (Pulse is a fork of BioGears) was funded by the US Army Medical Research and Materiel Command and administered by the Telemedicine and Advanced Technology Research Center (TATRC), Fort Detrick, MD under contract number W81XWH-13-2-0068.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachel B. Clipp.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bray, A., Webb, J.B., Enquobahrie, A. et al. Pulse Physiology Engine: an Open-Source Software Platform for Computational Modeling of Human Medical Simulation. SN Compr. Clin. Med. 1, 362–377 (2019). https://doi.org/10.1007/s42399-019-00053-w

Download citation

Keywords

  • Lumped-parameter
  • Medical modeling and simulation
  • Open-source software
  • Patient-specific modeling
  • Whole-body physiology