Skip to main content

Advertisement

Log in

Achieving higher production from low inputs using synergistic crop interactions under maize-based polyculture systems

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Modern monoculture oriented intensive maize cultivation is facing multiple biotic and abiotic stresses and various soil fertility linked issues, which compels to adopt sustainable approaches to deal with these yield limiting factors. On the other hand, simultaneous cultivation of two or more plant species in same plot, i.e. polyculture, provides eco-friendly and cost-effective insurance against crop failures in the adverse situations. In addition, maize-based intercropping systems provide better overall yields and monetary returns, diversify the agriculture produce, suppress biotic pressures (weed, pest and disease), improve soil fertility, conserve soil and water and also enhance fodder yield and quality. By providing increased pest control, trap/border crops can be low-cost and environment-friendly option for biotic stress management particularly in organic production systems. Moreover, agroforestry in maize systems enhances the soil fertility and soil carbon status, improves stress resilience and can help in climate change mitigation. However, the success of polyculture depends on environmental factors, compatibility among companion crops and their planting patterns. Co-culture of two different kinds of crops need different sets of skills and some extra efforts, especially during planting and harvesting. Further, intercropping is not much friendly with seed-to-seed mechanization and also put restrictions on chemical weed control, which hinders its adoption in intensive cropping systems. The present review highlights the role of maize-based polyculture systems in enhancing the land productivity and addressing the biotic and abiotic stresses while reducing input-use.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afrin S, Latif A, Banu NMA, Kabir MMM, Haque SS, Ahmed MME, Tonu NN, Ali MP (2017) Intercropping empower reduces insect pests and increases biodiversity in agro-ecosystem. Agric Sci 8:1–15

    Google Scholar 

  • Agboka K, Gounou S, Tamò M (2006) The role of maize-legumes-cassava intercropping in the management of maize ear borers with special reference to Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae). Int J Entomol 42:495–502

    Google Scholar 

  • Akinnifesi FK, Makumba W, Kwesiga FR (2006) Sustainable maize production using gliricidia/maize intercropping in Southern Malawi. Exp Agric 42:441–457

    Article  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD et al (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  Google Scholar 

  • Anders, MM, Potdar MV, and Francis CA (1996) Significance of intercropping in cropping systems in dynamics of roots and nitrogen under cropping system of semi-arid tropics. In: Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Rao JVDKK, Rego TJ (eds) Dynamics of roots and nitrogen in cropping systems of the Semi-Arid Tropics. JIRCAS International Agriculture Series No. 3, Ibaraki, pp 33–48.

  • Andert S (2021) The method and timing of weed control affect the productivity of intercropped maize (Zea mays L.) and bean (Phaseolus vulgaris L.). Agriculture 11:380

    Article  Google Scholar 

  • Andrew DJ, Kassam AH (1976) The importance of multiple cropping in increasing world food supplies. In: Chairman PRI, Sanchez PA, Triplett GB (eds) Multiple cropping. American Society of Agronomy, Madison, pp 1–10

    Google Scholar 

  • Baishya LK, Jamir T, Walling N, Rajkhowa DJ (2020) Evaluation of maize (Zea mays L.) + legume intercropping system for productivity, profitability, energy budgeting and soil health in hill terraces of Eastern Himalayan region. Legum Res. https://doi.org/10.18805/LR-4190.

  • Bamboriya SD, Bana RS, Pooniya VK, Rana KS, Singh YV (2017a) Planting density and nitrogen management effects on productivity, quality and water-use efficiency of rainfed pearlmillet (Pennisetum glaucum) under conservation agriculture. Indian J Agron 62:363–366

    Google Scholar 

  • Bamboriya SD, Bana RS, Pooniya V, Singh YV, Bamboriya SD, Choudhary KM (2017b) Effect of planting density and nitrogen management on micronutrient content, soil fertility and microbial properties in conservation agriculture based rainfed pearlmillet. Int J Chem Stud 5:849–853

    Google Scholar 

  • Bamboriya SD, Choudhary M, Singh A, Jat SL, Rakshit S (2020) Maize production for food, feed and fodder. In: IIMR technical bulletin 2020/2. Indian Institute of Maize Research, PAU Campus, Ludhiana, pp-2–4.

  • Bana RS, Gautam RC (2009) Nutrient management through organic sources in pearlmillet (Pennisetum glaucum)-wheat (Triticum aestivum) cropping system. Int J Trop Agric 27:127–129

    Google Scholar 

  • Bana RS, Shivay YS (2012) Productivity of summer forage crops and their effect on succeeding basmati rice (Oryza sativa) in conjunction with phosphogypsum-enriched urea. Indian J Agron 57:24–31

    Google Scholar 

  • Bana RS, Gautam RC, Rana KS (2012) Effect of different organic sources on productivity and quality of pearlmillet and their residual effect on wheat. Ann Agric Res 33:126–130

    Google Scholar 

  • Bana RS, Shivay YS, Sepat S, Rana KS, Pooniya V (2013) Effect of summer forage crops and phosphogypsum-enriched urea on productivity of basmati rice-wheat cropping system. Res Crops 14:649–653

    Google Scholar 

  • Bana RS, Pooniya V, Choudhary AK, Rana KS, Tyagi VK (2016) Influence of organic nutrient sources and moisture management on productivity, bio-fortification and soil health in pearlmillet (Pennisetum glaucum)+clusterbean (Cyamopsis tetragonaloba) intercropping system of semi-arid India. Indian J Agric Sci 86:1418–1425

    CAS  Google Scholar 

  • Bana RS, Sepat S, Rana KS, Pooniya V, Choudhary AK (2018) Moisture-stress management under limited and assured irrigation regimes in wheat (Triticum aestivum): Effects on crop productivity, water use efficiency, grain quality, nutrient acquisition and soil fertility. Indian J Agric Sci 86:1606–1612

    Google Scholar 

  • Bana RS, Singh D, Nain MS, Kumar H, Kumar V, Sepat S (2020) Weed control and rice yield stability studies across diverse tillage and crop establishment systems under on-farm environments. Soil Tillage Res. https://doi.org/10.1016/j.still.2020.104729

    Article  Google Scholar 

  • Barnes RD, Fagg CW (2003) Faidherbia albida: monograph and annotated bibliography. In: Tropical Forestry papers no. 41. Oxford Forestry Institute, Oxford, pp 6–8

  • Bekele B, Ademe D, Gemi Y, Habtemariam T (2021) Evaluation of intercropping legume covers with maize on soil moisture improvement in Misrak Azerinet Berbere Woreda. Water Conserv Sci Eng, SNNPR, Ethiopia. https://doi.org/10.1007/s41101-021-00109-w

    Book  Google Scholar 

  • Berg JVD (2006) Oviposition preference and larval survival of Chilo partellus (Lepidoptera: Pyralidae) on napier grass (Pennisetum purpureum) trap crops. Intl J Pest Manag 52:39–44

    Article  Google Scholar 

  • Berg JVD, Hamburg HV (2015) Trap cropping with napier grass, Pennisetum purpureum (Schumach), decreases damage by maize stem borers. Int J Pest Manag 61:1–7

    Google Scholar 

  • Bernays EA, Chapman, RF (1994) Behavior: the process of host-plant selection. In: host-plant selection by phytophagous insects. Springer, Boston. https://doi.org/10.1007/978-0-585-30455-7_5

  • Berresaw MK, Stage J, Diiro G, Ledermann ST (2018) The push–pull farming system in Kenya: implications for economic and social welfare. Land Use Policy. https://doi.org/10.1016/j.landusepol.2018.05.041

    Article  Google Scholar 

  • Bialis D, Papastylianau P, Konstantas A, Patsiali S, Karkanis A, Efthimiadou A (2010) Weed-suppressive effects of maize–legume intercropping in organic farming. Int J Pest Manage 56:173–181

    Article  Google Scholar 

  • Birkett MA, Chamberiain K, Khan Z, Pickett J (2006) Electrophysiological responses of the lepidopterous stemborers Chilo partellus and Busseola fusca to volatiles from wild and cultivated host pants. J Chem Ecol 32:2475–2487

    Article  CAS  Google Scholar 

  • Biswas S, Saha A, Mondal SS (2018) Response of integrated nutrient management and intercropping in cotton in new alluvial zone of West Bengal. J Pharmacogn Phytochem 7:1334–1337

    CAS  Google Scholar 

  • Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 51:499–519

    Article  CAS  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  Google Scholar 

  • Cagna CP, Calábria ZKP, Filho OG, Pacheco LP, da Silva TJA (2019) Structural properties of soil in maize and forage grass intercropping under no-tillage in the Brazilian Cerrado. Eng Agric 39(4):512–517

    Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  Google Scholar 

  • Chabi-Olaye A, Nolte C, Schulthess F, Borgemeister C (2005) Relationships of intercropped maize, stem borer damage to maize yield and land-use efficiency in the humid forest of Cameroon. Bull Entomol Res 95:417–427

    Article  CAS  Google Scholar 

  • Chai Q, Qin A, Ga Y, Yu A (2014) Higher yield and lower carbon emission by intercropping maize with rape, pea and wheat in arid irrigation areas. Agron Sustain Dev 34:535–543

    Article  CAS  Google Scholar 

  • Chalka MK, Nepalia V (2006) Nutrient uptake appraisal of maize intercropped with legumes and associated weeds under the influence of weed control. Indian J Agric Res 40:86–91

    Google Scholar 

  • Charles RL, Munishi P, Nazunda E (2013) Agroforestry as adaptation strategy under climate change in Mwanga District, Kilimanjaro, Tanzania. Int J Environ Prot 3:29–38

    Google Scholar 

  • Cheruiyot D, Midega CAO, Berg JVD, Pickett J, Khan Z (2018) Suitability of brachiaria grass as a trap crop for management of Chilo partellus. Entomol Exp Appl 166:139–148

    Article  Google Scholar 

  • Chirwa PW, Black CR, Ong CK, Maghembe JA (2003) Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agrofor Systs 59:265–277

    Article  Google Scholar 

  • Chirwa P, Ong C, Maghembe J, Black CR (2007) Soil water dynamics in cropping systems containing Gliricidia sepium, pigeonpea and maize in southern Malawi. Agrofor Systs 69:29–43

    Article  Google Scholar 

  • Choudhary SK, Singh RN, Upadhyay PK, Singh RK, Choudhary HR, Pal V (2014) Effect of vegetable intercrops and planting pattern of maize on growth, yield and economics of winter maize (Zea mays L.) in Eastern Uttar Pradesh. Environ Ecol 32:101–105

    Google Scholar 

  • Chu GX, Shen Q, Cao JL (2004) Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in intercropping system and its effect on soil N-fertility. Plant Soil 263:17–27

    Article  CAS  Google Scholar 

  • Cong W, Hoffland E, Li L, Derwerf WV (2014) Intercropping enhances soil carbon and nitrogen. Glob Change Biol 21:1715–1726

    Article  Google Scholar 

  • Cong W, Hoffland E, Li L (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 391:399–411

    Article  CAS  Google Scholar 

  • CTA (1988) Intercropping: farming for the future? Spore 15, CTA, Wageningen. https://hdl.handle.net/10568/44842

  • Dahmardeh M, Ghanbari A, Syasar B, Ramrodi M (2009) Intercropping maize (Zea mays L.) and cow pea (Vigna unguiculata L.) as a whole-crop forage: effects of planting ratio and harvest time on forage yield and quality. J Food Agric Environ 7:505–509

    CAS  Google Scholar 

  • De Barros IGT (2007) Mineral nutrition and water use patterns of a maize/cowpea intercrop on a highly acidic soil of the tropic semiarid. Field Crops Res 101:26–36

    Article  Google Scholar 

  • Dessougi HE, Dreele AZ, Claassen N (2003) Growth and phosphorus uptake of maize cultivated alone in mixed culture with other crops or after incorporation of their residues. J Plant Nutr Soil Sci 166:254–261

    Article  Google Scholar 

  • Du Q, Zhou L, Chen P, Liu X, Song C, Yang F, Wang X, Liu W, Sun X (2020) Relay–intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. Crop J 8:140–152

    Article  Google Scholar 

  • Dyer L, Oelbermann M, Echarte L (2012) Soil carbon dioxide and nitrous oxide emissions during the growing season from temperate maize-soybean intercrops. J Plant Nutr Soil Sci 175:394–400

    Article  CAS  Google Scholar 

  • Egesa A, Njagi S, Muui C (2016) Effect of facilitative interaction of sorghum-cowpea intercrop on sorghum growth rate and yields. J Environ Agric Sci 9:50–58

    Google Scholar 

  • Fajinmi A, Fajinmi OB (2010) Evaluation of pepper intercropped with tall-companion crop in the management of pepper veinal mottle virus potyvirus disease and its vectors on cultivated pepper (Capsicum annuum L.) in Nigeria. Agric J 5:205–210

    Article  Google Scholar 

  • FAOSTAT (2020) http://www.fao.org/faostat/en/#data/QC. Accessed 15 July 2020

  • Feike T, Doluschitz R, Chen Q, Claupein W (2012) How to overcome the slow death of intercropping in the North China Plain. Sustainability 4:2550–2565

    Article  Google Scholar 

  • Fereres A (2000) Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res 71:221–231

    Article  CAS  Google Scholar 

  • Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D (2010) Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot 29:744–750

    Article  Google Scholar 

  • Filho L, Pinheiro JM (2000) Physiological responses of maize and cowpea to intercropping. Pesq Agropec Bras 35:915–921

    Article  Google Scholar 

  • Fung KM, Tai APK, Yong T, Liu X, Hon-Ming Lam HM (2019) Co-benefits of intercropping as a sustainable farming method for safeguarding both food security and air quality. Environ Res Lett 14:044011. https://doi.org/10.1088/1748-9326/aafc8b

    Article  CAS  Google Scholar 

  • Gao Y, Duan A, Qiu X, Sun J, Zhang J, Liu H, Wang H (2010) Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron J 102:1149–1157

    Article  Google Scholar 

  • Gao X, Wu M, Xu R, Wang X, Pan R, Kim HJ, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE. https://doi.org/10.1371/journal.pone.0095031

    Article  Google Scholar 

  • Garitty DP (2004) Agroforestry and the achievement of the millennium development goals. Agrofor Syst 61:5–17

    Google Scholar 

  • Geren H, Avcioglu R, Soya H, Kir B (2008) Intercropping of corn with cowpea and bean: biomass yield and silage quality. Afr J Biotechnol 7:4100–4104

    Google Scholar 

  • Ghanbari A, Dahmarde M, Fakheri B, Ramroudi M (2010) Effect of maize (Zea mays L.)—cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. J Food Agric Environ 8:102–108

    Google Scholar 

  • Gold CS, Altieri MA, Bellotti AC (1990) Direct and residual effects of short duration intercrops on the cassava whiteflies Aleurotrachelus socialis and Trialeurodes variabilis (Homoptera: Aleyrodidae) in Colombia. Agric Ecosyst Environ 32:57–67

    Article  Google Scholar 

  • Gou F, Ittersum M, Wang G, Putten P, Van-der W (2016) Yield and yield components of wheat and maize in wheat–maize intercropping in the Netherlands. Eur J Agron 76:17–27

    Article  Google Scholar 

  • Hailu G, Niassy S, Khan ZR, Ochatum N, Subramanian S (2018) Maize–legume intercropping and push–pull for management of fall armyworm, stemborers, and striga in Uganda. Agron J 110:2513–2522

    Article  Google Scholar 

  • Hansen EM, Djurhuus J (1997) Nitrate leaching as influenced by soil tillage and catch crop. Soil Till Res 41:203–219

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2001) Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res 72:185–196

    Article  Google Scholar 

  • Hilger T, Keil A, Lippe M, Panomtaranichagul M, Saint-Macary C, Zeller M (2012) Soil conservation on sloping land: technical options and adoption constraints. In: Fröhlich HL, Schreinemachers P, Stahr K, Clemens G (eds) Sustainable land use and rural development in Southeast Asia: innovations and policies for mountainous areas. Springer environmental science and engineering. Springer, Berlin, pp 229–279

  • Himanen SJ, Mäkinen H, Rimhanen K, Savikko R (2016) Engaging farmers in climate change adaptation planning: assessing intercropping as a means to support farm adaptive capacity. Agriculture 6:34

    Article  Google Scholar 

  • Hussein MY, Samad MA (1993) Intercropping chilli with maize or brinjal to suppress populations of Aphis gossypii Glov., and transmission of chilli viruses. Int J Pest Manage 39:216–222

    Article  Google Scholar 

  • Ihejirika GO (2007) Effects of maize intercropping on incidence and severity of leafspot disease (Cercospora arachidicola Hori) and nodulation of groundnut. Int J Agric Res 2:504–507

    Article  Google Scholar 

  • Ijoyah MO (2014) Maize-soybean intercropping system: Effects on striga control, grain yields and economic productivity at Tarka, Benue State, Nigeria. Int Lett Nat Sci 19:69–75

    Google Scholar 

  • Inal A, Gunes A (2008) Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. J Plant Physiol 165:490–503

    Article  CAS  Google Scholar 

  • Inal A, Gunes A, Zhang F, Cakmak I (2007) Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol Biochem 45:350–356

    Article  CAS  Google Scholar 

  • Indiragandhi P, Meena B, Ushakumari R (2018) Eco-feast crop plants for insect pest management in groundnut. Int J Pharmacogn Phytochem 1:1469–1474

    Google Scholar 

  • Javanmard A, Dabbagh A, Nasab M, Javanshir A, Moghaddam Vahed M, Janmohammadi H (2009) Forage yield and quality in intercropping of maize with different legumes as double-cropped. J Food Agri Environ 7:163–166

    Google Scholar 

  • Jindal J, Hari NS, Hari JS (2012) Potential of napier millet, Pennisetum purpureum × P. glaucum, as a trap crop for managing Chilo partellus populations on maize. Int J Pest Manag 58:1–7

    Article  Google Scholar 

  • Kamara AY, Tofa AI, Ademulgun T, Solomen R (2019) Maize–soybean intercropping for sustainable intensification of cereal–legume cropping systems in Northern Nigeria. Exp Agric 55:73–87

    Article  Google Scholar 

  • Kang BT, Shannon DA (2001) Agroforestry with focus on alley cropping In sustaining soil fertility in West Africa. Soil Science Society of America, Madison, pp 197–224

    Google Scholar 

  • Kang BT, Grimme H, Lawson TL (1985) Alley cropping sequentially cropped maize and cowpea with leucaena on a sandy soil in Southern Nigeria. Plant Soil 85:267–277

    Article  CAS  Google Scholar 

  • Kermah M, Franke AC, Adjei-Nsiah S, Ahiabor BDK, Abaidoo RC, Giller KE (2017) Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of Northern Ghana. Field Crops Res 213:38–50

    Article  Google Scholar 

  • Khan ZR, Hassanali A, Overholt W (2002) Control of witchweed, Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1885

    Article  CAS  Google Scholar 

  • Khan Z, Pickett J, Wadhams L, Hassanali A, Midega C (2006) Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. Intercrops Crop Prot 25:989–995

    Article  Google Scholar 

  • Khan Z, Midega CAO, Hassanali A, Wadhams LJ (2007) Assessment of different legumes for the control of striga in maize and sorghum. Crop Sci 47:728–734

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Pickett JA (2010) Exploiting phytochemicals for developing a “push-pull” crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196

    Article  CAS  Google Scholar 

  • Khan Z, Midega CAO, Pittchar J, Pickett J (2011) Push-pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int J Agr Sustain 9:162–170

    Article  Google Scholar 

  • Kifuko-Koech PP, Okalebo JR, Othieno CO (2012) The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of desmodium–maize intercropping system in Western Kenya. Field Crops Res 137:97–107

    Article  Google Scholar 

  • Kithan L, Longkumer LT (2017) Production potential of maize (Zea mays L.)-based intercropping systems under foothill condition of Nagaland. Int J Bio-Resour Stress Manag 8:628–634

    Article  Google Scholar 

  • Kulak M, Nemecek T, Gaillard FE (2013) How eco-efficient are low-input cropping systems in Western Europe, and what can be done to improve their eco-efficiency? Sustainability 5:3722–3743

    Article  Google Scholar 

  • Kumar S, Rawat CR, Melkania N (2005) Forage production potential and economics of maize (Zea mays) and cowpea (Vigna unguiculata) intercropping under rainfed conditions. Indian J Agron 50:184–186

    Google Scholar 

  • Kumar A, Rana KS, Rana DS, Bana RS, Choudhary AK, Pooniya V (2015) Effect of nutrient- and moisture-management practices on crop productivity, water-use efficiency and energy dynamics in rainfed maize (Zea mays) + soybean intercropping system. Indian J Agron 60:152–156

    Google Scholar 

  • Kuri BR, Yadav RS, Kumawat A (2012) Evaluation of pearl millet (Pennisetum glaucum) and mothbean (Vigna acconitifolia) intercropping systems in hyper arid partially irrigated North-western plains zone. Indian J Agri Sci 82:993–996

    Google Scholar 

  • Kwesiga F, Akinnifesi FK, Mafongoya PL, McDermott MH, Agumya A (2003) Agroforestry research and development in Southern Africa during the 1990s: review and challenges ahead. Agrofor Systs 59:173–186

    Article  Google Scholar 

  • Lambert JDH, Arnason JT, Serratos A, Philogene BJR, Faris MA (1987) Role of intercropped red clover in inhibiting European corn borer (Lepidoptera: Pyralidae) damage to corn in Eastern Ontario. J Econ Entomol 80:1192–1196

    Article  Google Scholar 

  • Letourneau D, Armbrecht I, Salguero B, Montoya-Lerma J, Jiménez E, Daza M, Escobar S, Galindo V, Gutierrez-Chacón C, López S, López Mejía J, Rangel AJ, Rivera-Pedroza L, Saavedra-Rodríguez C, Torres A, Reyes A (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21

    Article  Google Scholar 

  • Li L, Zhang F, Li X, Christie P, Sun J, Tang C (2003) Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr Cycling Agroecosyst 65:61–71

    Article  CAS  Google Scholar 

  • Li SM, Li L, Zhang FS, Tang C (2004) Acid phosphatase role in chickpea/maize intercropping. Ann Bot 94:297–303

    Article  CAS  Google Scholar 

  • Li C, He X, Zhu S, Zhou H, Wang Y, Yang Z, Zhu Y (2009) Crop diversity for yield increase. PLoS ONE 4:1–6

    Article  CAS  Google Scholar 

  • Li B, Lia Y, Wua H, Zhanga F, Lia C, Lia X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci 113:6496–6501

    Article  CAS  Google Scholar 

  • Li Q, Chen J, Wu L, Luo X, Li N, Arafat Y, Lin S, Lin W (2018) Below ground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int J Mol Sci 19:622. https://doi.org/10.3390/ijms19020622

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Lyimo HJF, Pratt RC, Mnyuku RSOW (2012) An effective integrated crop management strategy for enhanced maize production in tropical agro-ecosystems prone to gray leaf spot. Crop Prot 41:57–63

    Article  Google Scholar 

  • Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB et al (2021) Intercropping—a low input agricultural strategy for food and environmental security. Agronomy 11:343

    Article  CAS  Google Scholar 

  • Maitra S, Shankar T, Banerjee P (2020) Potential and advantages of maize-legume intercropping system. In: Hossain A (ed) Maize-production and use. IntechOpen. https://doi.org/10.5772/intechopen.9172

  • Makinde EA, Ayoola OT, Makinde EA (2009) Intercropping leafy greens and maize on weed infestation, crop development, and yield. Int J Veg Sci 15:402–411

    Article  Google Scholar 

  • Makumba W, Janssen B, Oenema O, Akinnifesi FK, Mweta D, Kwesiga F (2006) The long-term effects of a gliricidia–maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties. Agric Ecosyst Environ 116:85–92

    Article  Google Scholar 

  • Maluleke MH, Addo-Bediako A, Ayisi KK (2005) Influence of maize/lablab intercropping on lepidopterous stem borer infestation in maize. J Econ Entomol 98:384–388

    Article  Google Scholar 

  • Mao L, Zhang L, Li W, van-der W, JSun, HSpiertz, LLi (2012) Yield advantage and water saving in maize/pea intercrop. Field Crops Res 138:11–20

    Article  Google Scholar 

  • Martin RC, Arnason TJ, Lambert JDH, Isabelle P, Voldeng HD, Smith DL (1989) Reduction of European corn borer (Lepidoptera: Pyralidae) damage by intercropping corn with soybean. J Econ Entomol 82:1455–1459

    Article  Google Scholar 

  • Mashingaidze AB (2004) Improving weed management and crop productivity in maize systems in Zimbabwe. PhD Thesis, Wageningen University, Wageningen, p 196

  • Matusso JMM, Mugwe JN, Mucheru-Muna M (2014) Potential role of cereal-legume intercropping systems in integrated soil fertility management in smallholder farming systems of Sub-Saharan Africa. Res J Agric Environ Manag 3:162–174

    Google Scholar 

  • McQuate GT, Jones GD, Sylva CD (2003) Assessment of corn pollen as a food source for two Tephritid fruit fly species. Environ Entomol 32:141–150

    Article  Google Scholar 

  • McSorley R (2008) Polyculture. In: Capinera JL (eds) Encyclopedia of entomology, Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_3039

  • Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR (2018) A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15

    Article  Google Scholar 

  • Midmore DJ (1993) Agronomic modification of resource use and intercrop productivity. Field Crops Res 34:357–380

    Article  Google Scholar 

  • Mishra BN, Singh B, Rajput AL (2001) Yield, quality and economics as influenced by winter maize (Zea mays)-based intercropping system in eastern Uttar Pradesh. Indian J Agron 46:425–431

    Google Scholar 

  • Mohler CI, Stoner KA (2009) Guidelines for intercropping. In: Mohler CL, Johnson SE (eds) Crop rotation on organic farms: a planning manual. Natural resource, agriculture, and engineering service, p 96

  • Morris RA, Garrity DP (1993) Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crops Res 34:319–334

    Article  Google Scholar 

  • Nassary EK, Baijukya F, Ndakidemi PA (2020) Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. Eur J Agron. https://doi.org/10.1016/j.eja.2019.125964

    Article  Google Scholar 

  • Nderitu J, Kasina M, Malenge F (2008) Evaluating border cropping system for management of aphids (Hemiptera: Aphididae) infesting okra (Malvaceae) in Kenya. J Entomol 5:262–269

    Article  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    Article  Google Scholar 

  • Nie S, Enejic AE, Chen Y, Sui P, Huan J, Huang GS (2012) Nitrate leaching from maize intercropping systems with N fertilizer over-dose. J Integr Agric 11:1555–1565

    Article  CAS  Google Scholar 

  • Nwilene FE, Onasanya A, Togola A, Oyetunji O, Semon M, Ofodile S (2017) Effect of intercropping maize and cassava with upland NERICA rice varieties on stemborer attack in Southwest Nigeria. J Entomol 8:417–428

    Article  Google Scholar 

  • Nyirenda H (2019) Achieving sustainable agricultural production under farmer conditions in maize-gliricidia intercropping in Salima District, Central Malawi. Heliyon 5:1–6

    Article  Google Scholar 

  • Nyoie TW, Liburd OE, Webb SE (2008) suppression of whiteflies, Bemisia tabaci (hemiptera: aleyrodidae) and incidence of cucurbit leaf crumple virus, a whitefly-transmitted virus of zucchini squash new to florida, with mulches and imidacloprid. Fla Entomol 91:470–475

    Google Scholar 

  • Odhiambo JA, Vanlauwe B, Tabu IM, Kanampiu F, Khan Z (2011) Effect of intercropping maize and soybeans on Striga hermonthica parasitism and yield of maize. Arch Phytopathol Plant Prot 44:158–167

    Article  Google Scholar 

  • Odunze AC, Musa YD, Abdulkadir A (2017) Soil Quality, carbon sequestration and yield of maize (Zea mays L.) under maize/legume cropping system in Alfisols of a Savanna Zone. Nigeria Am J Clim Change 6:622–642

    Google Scholar 

  • Ofori F, Stern WR (1987) Cereal–legume intercropping systems. Adv Agron 41:41–90

    Article  Google Scholar 

  • Olujobi OJ, Oyun MB, Oke DO (2013) Nitrogen accumulation, growth and yield of maize in pigeon pea/maize intercropg. J Bio Agric Health Sci 2:42–48

    Google Scholar 

  • Ouyang C, Kaixian W, An T, Jia H, Zi S, Yang Y, Wu B (2017) Productivity, economic, and environmental benefits in intercropping of maize with chili and grass. Agron J 109:1–8

    Article  CAS  Google Scholar 

  • Owusu A, Sadick A (2016) Assessment of soil nutrients under maize intercropping system involving soybean. Int Res J Agric Food Sci 1:33–43

    Google Scholar 

  • Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2011) Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric Ecosyst Environ 141:153–161

    Article  CAS  Google Scholar 

  • Pleasant JMT, Burt RF (2010) Estimating productivity of traditional iroquoian cropping systems from field experiments and historical literature. J Ethnobiol 30:52–79

    Article  Google Scholar 

  • Prahraj CS, Blaise D (2016) Intercropping: an approach for area expansion of pulses. Indian J Agron 61:113–121

    Google Scholar 

  • Pretty J (2007) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond Ser B Biol Sci 363:447–465

    Article  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841

    Article  Google Scholar 

  • Rana KS, Choudhary AK, Sepat S, Bana RS (2014) Advances in field crop production. Post Graduate School, IARI, New Delhi, p 475

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann NY Acad Sci 1312:105–112

    Article  Google Scholar 

  • Rao MR, Willey RW (1980) Evaluation of yield stability in intercropping: studies on sorghum/pigeonpea. Exp Agric 16:105–116

    Article  Google Scholar 

  • Rea JH, Wratten SD, Sedcole R, Cameron CJ, Davis SI, Chapman RB (2002) Trap cropping to manage green vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric Entomol 4:101–107

    Article  Google Scholar 

  • Reeves TG, Thomas G, Ramsay G (2016) Save and grow in practice: maize, rice, wheat: a guide to sustainable cereal production. FAO, Rome, pp-1–83

  • Rhino B, Verchère A, Thibaut C, Ratnadass A (2015) Field evaluation of sweet corn varieties for their potential as a trap crop for Helicoverpa zea under tropical conditions. Int J Pest Manag 62:1–8

    Google Scholar 

  • Rodríguez-Jurado S, García-Trejo JF, Mejía-Ugalde I, Vera-Morales JM, Vargas-Hernández M, Ávila-Juárez L (2020) Water and fertilizer efficiency in a polyculture cropping system under three production systems. J Water Reuse Desalin. https://doi.org/10.2166/wrd.2020.027

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica Oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rosenstock TS, Tully KL, Arias-Navarro C, Neufeldt H, Butterbach-Bahl K, Verchot LV (2014) Agroforestry with N2-fixing trees: sustainable development’s friend or foe? Curr Opin Environ Sus 6:15–21

    Article  Google Scholar 

  • Scialabba NE, Pacini C, Moller S (2014) Smallholder ecologies. Food and Agriculture Organization, Rome, pp 1–54

    Google Scholar 

  • Senaratne R, Liyanage NDL, Soper RJ (1995) Nitrogen fixation of and N transfer from cowpea, mungbean and groundnut when intercropped with maize. Fertil Res 40:41–48

    Article  Google Scholar 

  • Sharma RC, Banik P (2013) Baby corn-legumes intercropping system: II weed dynamics and community structure. Njas-Wagen J Life Sci 67:11–18

    Article  Google Scholar 

  • Sharma A, Shrestha G, Reddy GVP (2019) Trap crops: how far we are from using them in cereal crops? Ann Entomol Soc Am 112:330–339

    Article  Google Scholar 

  • Simwaka PL, Tesfamariam EH, Ngwira AR, Chirwa PW (2020) Carbon sequestration and selected hydraulic characteristics under conservation agriculture and traditional tillage practices in Malawi. Soil Res. https://doi.org/10.1071/SR20007

    Article  Google Scholar 

  • Skovgård H, Päts P (1997) Reduction of stemborer damage by intercropping maize with cowpea. Agric Ecosyst Environ 62:13–19

    Article  Google Scholar 

  • Smith HA, McSorley R (2000) Potential of field corn as a barrier crop and eggplant as a trap crop for management of Bemisia argentifolii (Homoptera: Aleyrodidae) on common bean in North Florida. Fla Entomol 83:145

    Article  Google Scholar 

  • Smith HA, Koenig RL, McAuslane HJ, McSorley R (2000) Effect of silver reflective mulch and a summer squash trap crop on densities of immature Bemisia argentifolii (Homoptera: Aleyrodidae) on organic bean. J Econ Entomol 93:726–731

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 50–59

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170

    Article  Google Scholar 

  • Stoltz E, Nadeau E (2014) Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crops Res 169:21–29

    Article  Google Scholar 

  • Sujayanand GK, Sharma RK, Shankarganesh K, Saha S, Tomar RS (2015) Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla Entomol 98:305–314

    Article  Google Scholar 

  • Sunkad G, Kenchanagoudar PV, Naragund VB, Naik MK (2005) Management of peanut bud necrosis disease through intercropping. Indian Phytopathol 58:207–211

    Google Scholar 

  • Tamta A, Kumar R, Ram H, Meena R, Meena V, Yadav MR (2019) Productivity and profitability of legume-cereal forages under different planting ratio and nitrogen fertilization. Legum Res 42:102–107

    Google Scholar 

  • Trenbath BR (1993) Intercropping for the management of pests and diseases. Field Crops Res 34:381–405

    Article  Google Scholar 

  • Tripathi SC, Venkatesh K, Meena RP, Chander S, Singh GP (2021) Sustainable intensifcation of maize and wheat cropping system through pulse intercropping. Sci Rep 11:18805

    Article  CAS  Google Scholar 

  • Tsubo M, Walker S, Mukhala E (2001) Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res 71:17–29

    Article  Google Scholar 

  • Vyamana VG, Chamshama SAO, Andrew SM (2021) Soil nutrients and maize yields responses to indigenous agroforestry tree post-fallows management in Tanzania. Trees Forests People 6:e100164

    Article  Google Scholar 

  • Walker S, Ogindo H (2003) The water budget of rainfed maize and bean intercrop. Phys Chem Earth 28:919–926

    Article  Google Scholar 

  • Wallace JS (2000) Increasing agricultural water use efficiency to meet future food production. Agric Ecosyst Environ 82:105–119

    Article  Google Scholar 

  • Whitmore AP, Schröder JJ (2007) Intercropping reduces nitrate leaching under field crops without loss of yield: a modelling study. Eur J Agron 27:81–88

    Article  CAS  Google Scholar 

  • Woolley J, Davis JHC (1991) The agronomy of intercropping with beans. CAB International. https://agris.fao.org/agris-search/search.do?recordID=GB9117295

  • Xu B, Shan L (2010) Seasonal root biomass and distribution of switchgrass and milk vetch intercropping under 2:1 row replacement in a semiarid region in Northwest China. Commun Soil Sci Plant Anal 41:1959–1973

    Article  CAS  Google Scholar 

  • Yadav R, Tarfdar J (2001) Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Bio Ferti Soils 34:140–143

    CAS  Google Scholar 

  • Yadav MR, Parihar CM, Jat SL, Singh AK, Kumar R, Yadav R, Kuri BR, Parihar M, Varma AP, Jat ML (2017) Long term effect of legume intensified crop rotations and tillage practices on productivity and profitability of maize vis-a-vis soil fertility in North-Western Indo-Gangetic Plains of India. Legum Res 40:282–290

    Google Scholar 

  • Yang X, Gao W, Zhang M, Chen Y, Sui P (2014) Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J Clean Prod 76:131–139

    Article  Google Scholar 

  • Yang F, Wang X, Liao D, Lu F, Gao R, Liu W, Yang W (2015) Yield response to different planting geometries in maize–soybean relay strip intercropping systems. Agron J 107:296–304

    Article  Google Scholar 

  • Yong T, Liu XM, Yang F, Song C, Wang X, Liu W, Su B, Zhou L, Yang W (2015) Characteristics of nitrogen uptake, use and transfer in a wheat-maize-soybean relay intercropping system. Plant Prod Sci 18:388–397

    Article  CAS  Google Scholar 

  • Zehnder G, Gurr GM, Kühne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80

    Article  CAS  Google Scholar 

  • Zhang Lu, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low-Carbon Technol 13:338–352

    Google Scholar 

  • Zhang X, Wu K, Fullen M, Wu B (2020) Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province, China. J Mt Sci 17:423–434

    Article  Google Scholar 

  • Zhiwen G, Wen Y, Qiang C (2021) Straw and residual film management enhances crop yield and weakens CO2 emissions in wheat–maize intercropping system. Sci Rep 11:14077

    Article  CAS  Google Scholar 

  • Zou Y, Zhang F (2009) Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agron Sustain Dev 29:63–71

    Article  Google Scholar 

  • Zou Y, Zhang F, Li X, Cao Y (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220:13–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Swaroop Bana.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamboriya, S.D., Bana, R.S., Kuri, B.R. et al. Achieving higher production from low inputs using synergistic crop interactions under maize-based polyculture systems. Environmental Sustainability 5, 145–159 (2022). https://doi.org/10.1007/s42398-022-00228-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-022-00228-7

Keywords

Navigation