Abyzov SS, Bobin NE, Koudryashov BB (1982) Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USSR 9:558–564
Google Scholar
Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of Amoebas: An Update. Front Microbiol 7:349. https://doi.org/10.3389/fmicb.2016.00349
Article
Google Scholar
Altshuler I, Goordial J, Whyte LG (2017) Microbial life in permafrost. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer International Publishing, pp 153–179. https://doi.org/10.1007/978-3-319-57057-0_8
Alves IM, Gonçalves VN, Oliveira FS, Schaefer CE, Rosa CA, Rosa LH (2019) The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles 23:327–336
Article
Google Scholar
Anesio AM, Lutz S, Chrismas NAM, Benning LG (2017) The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3:10. https://doi.org/10.1038/s41522-017-0019-0
Article
Google Scholar
Ball MM, Gómez W, Magallanes X, Rosales R, Melfo A, Yarzábal LA (2014) Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes. World J Microbiol Biotechnol 30(3):931–941
CAS
Article
Google Scholar
Barras C (2017) Wakey, wakey. New Sci 234(3126):34–37. https://doi.org/10.1016/S0262-4079(17)30978-8
Article
Google Scholar
Bellas CM, Anesio AM, Barker G (2015) Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front Microbiol 6:1–14
Article
Google Scholar
Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7(4):e34953
Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 82:91–118. https://doi.org/10.1016/B978-0-12-394621-8.00014-5
CAS
Article
Google Scholar
Brandes N, Linial M (2019) Giant Viruses—Big Surprises. Viruses 11:404. https://www.mdpi.com/1999-4915/11/5/404#cite
Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Latin Am Geog 12(2):85–124. https://doi.org/10.1353/lag.2013.0016
Article
Google Scholar
Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1998) Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, Boulder
Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD et al (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol 22(3):207–212
Article
Google Scholar
Castello JD, Rogers SO, Smith JE, Starmer WT, Zhao Y (2005) Chapter 13. Plant and bacterial viruses in the Greenland Ice Sheet. In: Castello J, Rogers SO (eds) Life in Ancient Ice. Princenton University Press, Oxford , pp 196–207. https://doi.org/10.2307/j.ctt1dr350p.19
Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485
Article
Google Scholar
Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2002) Isolation and identification of bacteria from ancient and modern ice core archives. In: Casassa G, Sepulveda FV, Sinclair R (eds) Patagonian ice fields. A unique natural laboratory for environmental and climate change studies. Kluwer, New York, pp 9–16
Chapter
Google Scholar
Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: A model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584
CAS
Article
Google Scholar
Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139. https://doi.org/10.1126/science.289.5482.1139b
CAS
Article
Google Scholar
D’Costa V, King C, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461. https://doi.org/10.1038/nature10388
CAS
Article
Google Scholar
D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965
Article
CAS
Google Scholar
Dancer SJ, Shears P, Platt DJ (1997) Isolation and characterization of coliforms from glacial ice and water in Canada’s High Arctic. J Appl Microbiol 82:597–609
CAS
Article
Google Scholar
Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MdR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA (2019) A review on viral metagenomics in extreme environments. Front Microbiol 10:2403. https://doi.org/10.3389/fmicb.2019.02403
Article
Google Scholar
de Menezes GCA, Porto BA, Amorim SS et al (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376. https://doi.org/10.1007/s00792-020-01161-5
Article
Google Scholar
Ding Y, Zhang S, Zhao L, Li Z, Kang S (2019) Global warming weakening the inherent stability of glaciers and permafrost. Sci Bull 64:245–253
Article
Google Scholar
Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Rabatel A, Pitte P, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12:802–808. https://doi.org/10.1038/s41561-019-0432-5
CAS
Article
Google Scholar
Edwards A (2015) Coming in from the cold: Potential microbial threats from the terrestrial cryosphere. Front Earth Sci 3:10–13
Article
Google Scholar
Fegel TS, Baron JS, Fountain AG, Johnson GF, Hall EK (2016) The differing biogeochemical and microbial signatures of glaciers and rock glaciers. J Geophys Res Biogeosci 121:919–932
CAS
Article
Google Scholar
Filippova SN, Surgucheva NA, Sorokin VV et al (2016) Bacteriophages in Arctic and Antarctic low-temperature systems. Microbiology 85:359–366. https://doi.org/10.1134/S0026261716030048
CAS
Article
Google Scholar
García-Descalzo L, García-López E, Postigo M, Baquero F, Alcazar A, Cid C (2013) Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers. Front Microbiol 4:55. https://doi.org/10.3389/fmicb.2013.00055
Article
Google Scholar
Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544
Article
Google Scholar
Gillings MR (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev 78(2):257–277
Article
CAS
Google Scholar
Goodwin K, Loso M, Braun M (2012) Glacial transport of human waste and survival of fecal bacteria on Mt. McKinley’s Kahiltna glacier, Denali National Park, Alaska. Arctic Antarct Alp Res 44(4):432–445
Article
Google Scholar
Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77(10):3234–3243
CAS
Article
Google Scholar
Hodson A, Anesio A, Tranter M, Fountain A, Osborn M, Priscu J et al (2008) Glacial ecosystems. Ecol Monogr 78(1):41–67. http://www.jstor.org/stable/27646118. Accessed 23 Mar 2021
Holmes EC (2014) Freezing viruses in time. PNAS 111(47):16643–16644
CAS
Article
Google Scholar
Houldcroft CJ, Underdown SJ (2016) Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition. Am J Phys Anthropol 160(3):379–388
Article
Google Scholar
Houwenhuyse S, Macke E, Reyserhove L, Bulteel L, Decaestecker E (2018) Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol Appl 11:29–41. https://doi.org/10.1111/eva.12538
Article
Google Scholar
Hu B, Guo H, Zhou P et al (2020) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00459-7
Article
Google Scholar
Hueffer K, Drown D, Romanovsky V, Hennessy T (2020) Factors contributing to Anthrax outbreaks in the Circumpolar North. EcoHealth 17(1):174–180. https://doi.org/10.1007/s10393-020-01474-z
Article
Google Scholar
Hugelius G, Virtanen T, Kaverin D, Pastukhov A, Rivkin F, Marchenko S, Romanovsky V, Kuhry P (2011) High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. J Geophys Res Biogeosci 116:G03024. https://doi.org/10.1029/2010JG001606
CAS
Article
Google Scholar
Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys Res Earth Surf 117(4):1–10
Google Scholar
IPCC (2019) Technical summary. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Poloczanska E, Mintenbeck K, Tignor M, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC Special report on the ocean and cryosphere in a changing climate (in press)
Kääb A, Leinss S, Gilbert A et al (2018) Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci 11:114–120. https://doi.org/10.1038/s41561-017-0039-7
CAS
Article
Google Scholar
Kashuba E, Dmitriev AA, Kamal SM, Melefors O, Griva G, Römling U, Ernberg I, Kashuba V, Brouchkov A (2017) Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis 28(1):1345574. https://doi.org/10.1080/16512235.2017.1345574
CAS
Article
Google Scholar
Keane JT (2018) Catastrophic glacier collapse. Nat Geosci 11:87. https://doi.org/10.1038/s41561-018-0063-2
CAS
Article
Google Scholar
Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57. https://doi.org/10.1007/s00792-010-0336-1
Article
Google Scholar
Knowlton C, Veerapaneni R, D’Elia T, Rogers SO (2013) Microbial Analyses of Ancient Ice Core Sections from Greenland and Antarctica. Biology 2:206–232. https://doi.org/10.3390/biology2010206
CAS
Article
Google Scholar
Kurakov A, Mindlin S, Beletsky A, Shcherbatova N, Rakitin A, Ermakova A, Mardanov A, Petrova M (2016) The ancient small mobilizable plasmid pALWED1.8 harboring a new variant of the noncassette streptomycin/spectinomycin resistance gene aadA27. Plasmid 84–85:36–43. https://doi.org/10.1016/j.plasmid.2016.02.005
CAS
Article
Google Scholar
La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033
Article
Google Scholar
Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Coute Y, Rivkina E, Abergel C, Claverie J (2014) Thirty-thousandyear-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA 111(11):4274–4279. https://doi.org/10.1073/pnas.1320670111
CAS
Article
Google Scholar
Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic J, Ramus C, Bruley C, Labadie K, Shmakova L, Rivkina E, Couté Y, Abergel C, Claverie J (2015) In depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1510795112
Article
Google Scholar
Makowska N, Zawierucha K, Nadobna P, Piątek-Bajan K, Krajewska A, Szwedyk J, Iwasieczko P, Mokracka J, Koczura R (2020) Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137022
Article
Google Scholar
Malavin S, Shmakova L (2020) Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea). Eur J Protistol. https://doi.org/10.1016/j.ejop.2020.125671
Article
Google Scholar
Malavin S, Shmakova L, Claverie J-M, Rivkina E (2020) Frozen Zoo: a collection of permafrost samples containing viable protists and their viruses. Biodiv Data J. https://doi.org/10.3897/BDJ.8.e51586
Article
Google Scholar
Mindlin SZ, Soina VS, Petrova MA, Gorlenko ZhM (2008) Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Russ J Gen 44(1):27–34
CAS
Article
Google Scholar
Miner KR, Edwards A, Miller Ch (2020) Deep frozen Arctic microbes are waking up. Scientific American. https://www.scientificamerican.com/article/deep-frozen-arctic-microbes-are-waking-up/
Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 31–50
Chapter
Google Scholar
Miteva V, Sowers T, Schupbach S, Fischer H, Brenchley J (2016) Geochemical and microbiological studies of nitrous oxide variations within the new NEEM Greenland ice core during the Last Glacial period. Geomicrobiol J 33:647–660
CAS
Article
Google Scholar
Mogrovejo-Arias DC, Brill FHH, Wagner D (2020) Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen. Svalbard Environ Earth Sci 79(5):1–9
Google Scholar
Ng TF, Chen LF, Zhou Y, Shapiro B, Stiller M, Heintzman PD, Varsani A, Kondov NO, Wong W, Deng X, Andrews TD, Moorman BJ, Meulendyk T, MacKay G, Gilbertson RL, Delwart E (2014) Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci USA 111(47):16842–16847. https://doi.org/10.1073/pnas.1410429111
CAS
Article
Google Scholar
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N et al (2016) Uncovering Earth’s virome. Nature 536(7617):425–430
CAS
Article
Google Scholar
Pelto M, Network WGMS (2018) Alpine glaciers [in State of the Climate in 2017]. Bull Am Meteorol Soc 99(8):S23–S25
Google Scholar
Perini L, Gostinčar C, Gunde-Cimerman N (2019) Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 9:20230. https://doi.org/10.1038/s41598-019-56290-5
CAS
Article
Google Scholar
Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai MM (2015) Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10(3):e0069533
Article
CAS
Google Scholar
Perry J, Waglechner N, Wright G (2016) The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a025197
Article
Google Scholar
Petrova M, Gorlenko Z, Mindlin S (2009) Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychrophilus permafrost strain. FEMS Microbiol Lett 296(2):190–197. https://doi.org/10.1111/j.1574-6968.2009.01635.x
CAS
Article
Google Scholar
Petrova M, Gorlenko Z, Mindlin S (2011) Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. Res Microbiol 162:337–345
CAS
Article
Google Scholar
Petrova M, Kurakov A, Shcherbatova N, Mindlin S (2014) Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology 160:2253–2263. https://doi.org/10.1099/mic.0.079335-0
CAS
Article
Google Scholar
Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251
CAS
Article
Google Scholar
Priscu JC, Christner BC, Foreman CM, Royston-Bishop G (2006) Biological Material in Ice Cores. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, London
Rabatel A, Ceballos JL, Micheletti N, Jordan E, Braitmeier M, González J, Mölg N, Ménégoz M, Huggel C, Zemp M (2017) Toward an imminent extinction of Colombian glaciers? Geogr Ann Ser A Phys Geogr. https://doi.org/10.1080/04353676.2017.1383015
Article
Google Scholar
Rafiq M, Hayat M, Zada S, Sajjad W, Hassan N, Hasan F (2019) Geochemistry and bacterial recovery from Hindu Kush Range glacier and their potential for metal resistance and antibiotic production. Geomicrobiol J 36:326–338. https://doi.org/10.1080/01490451.2018.1551947
CAS
Article
Google Scholar
Ramírez N, Melfo A, Resler LM, Llambí LD (2020) The end of the eternal snows: Integrative mapping of 100 years of glacier retreat in the Venezuelan Andes. Arctic Antarctic Alpine Res 52:563–581
Article
Google Scholar
Rassner SM (2017) Viruses in glacial environments. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology, 2nd edn. Springer, Berlin, pp 111–131
Chapter
Google Scholar
Rassner SME, Anesio AM, Girdwood SE, Hell K, Gokul JK, Whitworth DE, Edwards A (2016) Can the bacterial community of a High Arctic glacier surface escape viral control? Front Microbiol 7:956. https://doi.org/10.3389/fmicb.2016.00956
Article
Google Scholar
Rogers SO, Starmer WT, Castello JD (2004a) Recycling of pathogenic microbes through survival in ice. Med Hypotheses 63(5):773–777
Article
Google Scholar
Rogers SO, Theraisnathan V, Ma LJ, Zhao Y, Zhang G, Shin SG, Castello JD, Starmer WT (2004b) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544
CAS
Article
Google Scholar
Rondón J, Gómez W, Ball MM, Melfo A, Rengifo M, Balcázar W, Dávila-Vera D, Balza-Quintero A, Mendoza-Briceño RV, Yarzábal LA (2016) Diversity of culturable bacteria recovered from Pico Bolívar’s glacial and subglacial environments, at 4950 m Venezuelan Tropical Andes. Can J Microbiol 62(11):904–917. https://doi.org/10.1139/cjm-2016-0172
CAS
Article
Google Scholar
Roossinck MJ, García-Arenal F (2015) Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 10:56–62. https://doi.org/10.1016/j.coviro.2015.01.005
Article
Google Scholar
Saadi H, Pagnier I, Colson P, Cherif JK, Beji M, Boughalmi M et al (2013a) First isolation of Mimivirus in a patient with pneumonia. Clin Infect Dis 57:e127–e134. https://doi.org/10.1093/cid/cit354
Article
Google Scholar
Saadi H, Reteno DG, Colson P, Aherfi S, Minodier P, Pagnier I et al (2013b) Shan virus: a new mimivirus isolated from the stool of a Tunisian patient with pneumonia. Intervirology 56:424–429. https://doi.org/10.1159/000354564
Article
Google Scholar
Saidi-Mehrabad A, Neuberger P, Cavaco M et al (2020) Optimization of subsampling, decontamination, and DNA extraction of difficult peat and silt permafrost samples. Sci Rep 10:14295. https://doi.org/10.1038/s41598-020-71234-0
CAS
Article
Google Scholar
Säwström C, Lisle J, Anesio AM et al (2008) Bacteriophage in polar inland waters. Extremophiles 12:167–175. https://doi.org/10.1007/s00792-007-0134-6
Article
Google Scholar
Schaefer K, Lantuit H, Romanovsky V, Schuur EAG (2012) Policy implications of warming permafrost. United Nations Environment Programme Special Report, Nairobi, Kenya
Schmieder R, Edwards R (2012) Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 7(1):73–89. https://doi.org/10.2217/fmb.11.135
CAS
Article
Google Scholar
Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G et al (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5(1):127–134
CAS
Article
Google Scholar
Shatilovich AV, Shmakova LA, Gubin SV, Gudkov AV, Gilichinsky DA (2005) Viable protozoa in Late PIleistocene and Holocene permafrost sediments. Doklady Biol Sci 401:136–138
CAS
Article
Google Scholar
Shatilovich AV, Shmakova LA, Mylnikov AP, Gilichinsky DA (2009) Ancient protozoa isolated from permafrost. In: Margesin R (ed) Permafrost soils. Springer, Berlin, Heidelberg, pp 97–115. https://doi.org/10.1007/978-3-540-69371-0_8
Shatilovich A, Stoupin D, Rivkina E (2015) Ciliates from ancient permafrost: assessment of cold resistance of the resting cysts. Eur J Protistol 51:230–240. https://doi.org/10.1016/j.ejop.2015.04.001
Article
Google Scholar
Shatilovich AV, Tchesunov AV, Neretina TV, Grabarnik IP, Gubin SV, Vishnivetskaya TA, Onstott TC, Rivkina EM (2018) Viable nematodes from Late Pleistocene permafrost of the Kolyma River lowland. Dokl Biol Sci 480:100–102
CAS
Article
Google Scholar
Shmakova L, Bondarenko N, Smirnov A (2016) Viable species of Flamella (Amoebozoa: Variosea) isolated from ancient Arctic permafrost sediments. Protist 167:13–30. https://doi.org/10.1016/j.protis.2015.11.001
Article
Google Scholar
Shmakova LA, Karpov SA, Malavin SA, Smirnov AV (2018) Morphology, biology and phylogeny of Phalansterium arcticum sp. n. (Amoebozoa, Variosea), isolated from ancient Arctic permafrost. Eur J Protistol 63:117–129. https://doi.org/10.1016/j.ejop.2018.02.002
Article
Google Scholar
Shoham D, Jahangir A, Ruenphet S, Takehara K (2012) Persistence of avian influenza viruses in various artificially frozen environmental water types. Influ Res Treat. https://doi.org/10.1155/2012/912326
Article
Google Scholar
Slater T, Lawrence IR, Otosaka IN, Shepherd A, Gourmelen N, Jakob L, Tepes P, Gilbert L, Nienow P (2021) Earth’s Ice Imbalance. Cryosphere 15:233–246. https://doi.org/10.5194/tc-15-233-2021
Article
Google Scholar
Smith AW, Skilling DE, Castello JD, Rogers SO (2004) Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses. Med Hypotheses 63(4):560–566
Article
Google Scholar
Sommaruga R (2015) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 37(3):509–518
Article
Google Scholar
Soucy SM, Huang J, Gogarten JP (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16(8):472–482. https://doi.org/10.1038/nrg3962
CAS
Article
Google Scholar
Stoupin D, Kiss AK, Arndt H, Shatilovich AV, Gilichinsky DA, Nitsche F (2012) Cryptic diversity within the choanoflagellate morphospecies complex Codosiga botrytis—phylogeny and morphology of ancient and modern isolates. Eur J Protistol 48:263–273. https://doi.org/10.1016/j.ejop.2012.01.004
Article
Google Scholar
Surette M, Wright GD (2017) Lessons from the environmental antibiotic resistome. Annu Rev Microbiol 71:309–312
CAS
Article
Google Scholar
Tan L, Li L, Ashbolt N, Wang X, Cui Y, Zhu X, Xu Y, Yang Y, Mao D, Luo Y (2018) Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ 621:1176–1184. https://doi.org/10.1016/j.scitotenv.2017.10.110
CAS
Article
Google Scholar
Timofeev V, Bahtejeva I, Mironova R, Titareva G, Lev I, Christiany D et al (2019) Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia. PLoS ONE 14(5):1–21
Article
CAS
Google Scholar
Tokarz-Deptuła B, Niedźwiedzka-Rystwej P, Czupryńska P, Deptuła W (2019) Protozoal giant viruses: agents potentially infectious to humans and animals. Virus Genes 55:574–591
Article
CAS
Google Scholar
Turchetti B, Selbmann L, Blanchette RA, Di Mauro S, Marchegiani E, Zucconi L et al (2015) Cryptococcus vaughanmartiniae sp. Nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments. Extremophiles 19(1):149–159
Article
Google Scholar
Ushida K, Segawa T, Kohshima S, Takeuchi N, Fukui K, Li Z, Kanda H (2010) Application of real-time PCR array to the multiple detection of antibiotic resistant genes in glacier ice samples. J Gen Appl Microbiol 56:43–52. https://doi.org/10.2323/jgam.56.43
CAS
Article
Google Scholar
Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6(1):40. https://doi.org/10.1186/s40168-018-0424-5
Article
Google Scholar
Vaughan DG, Comiso JC, Allison I et al (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner GK (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 317–382
Google Scholar
Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K (2013) Microbial biodiversity in glacier-fed streams. ISME J 7:1651–1660
CAS
Article
Google Scholar
Wilson W, Lane D, Pearce D et al (2000) Transmission electron microscope analysis of virus-like particles in the freshwater lakes of Signy Island, Antarctica. Polar Biol 23:657–660. https://doi.org/10.1007/s003000000152
Article
Google Scholar
Worobey M (2008) Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus. J Virol 82(7):3769–3774
CAS
Article
Google Scholar
Wouters B, Gardner AS, Moholdt G (2019) Global glacier mass loss during the GRACE satellite mission (2002–2016). Front Earth Sci 7:96. https://doi.org/10.3389/feart.2019.00096
Article
Google Scholar
Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13(5):589–594
CAS
Article
Google Scholar
Zhang G, Shoham D, Gilichinsky D, Davydov S, Castello JD, Rogers SO (2006) Evidence of influenza A Virus RNA in Siberian Lake Ice. J Virol 80(24):12229–12235
CAS
Article
Google Scholar
Zhong ZP, Solonenko NE, Li YF, Gazitúa MC, Roux S, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG (2020) Glacier ice archives fifteen-thousand-year-old viruses. BioRxiv. https://doi.org/10.1101/2020.01.03.894675
Article
Google Scholar