Skip to main content

Advertisement

Log in

Harvesting and pretreatment techniques of aquatic macrophytes and macroalgae for production of biofuels

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Aquatic plants are promising green energy feedstocks owing to their high rate of growth, photosynthesis, and CO2-fixing efficiency. They possess a paramount advantage of non-competitiveness with food crops over the first or second generation biofuel feedstocks. Specifically, low lignin content and higher concentrations of polysaccharides make these plants very attractive for biogas and liquid biofuel production. However, a regular supply of biomass is a limitation that can be overcome by employing harvesting techniques with sustainable measures, which ensure rapid regrowth of biomass for the next cycle. Harvesting of both aquatic macrophytes (weeds) as well as macroalgae is achieved by either manual or mechanical means. Following regular supply through effective harvesting, biofuel production can be further restricted due to their complex structural make-up. In order to improve the biofuel production, various pretreatment methods have been explored to disrupt the complex structure of aquatic weeds and macroalgae, thereby increasing the breakdown of biomass material more readily. This review examines traditional and modern techniques for biofuel production using aquatic weeds and macroalgae. It also discusses recent advancements in the harvesting and pretreatment techniques that improve overall efficiency. Choosing an effective pretreatment method can greatly influence biofuel recovery and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JMM, Bleathman G, Thomas D, Gallagher JA (2017) The effect of mechanical pre-processing and different drying methodologies on bioethanol production using the brown macroalga Laminaria digitata (Hudson) JV Lamouroux. J Appl Phycol 29:2463–2469

    CAS  Google Scholar 

  • Adelakun KM, Kehinde AS, Amali RP, Ogundiwin DI, Omotayo OL (2016) Nutritional and phytochemical quality of some tropical aquatic plants. Poultry, Fish Wildl Sci 1–4

  • Adeniji HA (1979) Framework document on special problem of man-made lakes In: SIL Workshop on African Limnology, UNEP Head-Quarters, Nairobi, Kenya

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    CAS  Google Scholar 

  • Ajayi OA, Adefila SS (2012) Methanol production from cow dung. J Environ Earth Sci 2:948–2225

    Google Scholar 

  • Aloo P, Ojwang W, Omondi R, Njiru JM, Oyugi D (2013) A review of the impacts of invasive aquatic weeds on the bio-diversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodivers J 4:471–482

    Google Scholar 

  • Al-Yamani FY, Polikarpov I, Al-Ghunaim A, Mikhaylova T (2014) Field guide of marine macroalgae (Chlorophyta, Rhodophyta, Phaeophyceae) of Kuwait. Kuwait Inst Sci Res Kuwait

  • Amamou S, Sambusiti C, Monlau F, Dubreucq E, Barakat A (2018) Mechano-enzymatic deconstruction with a new enzymatic cocktail to enhance enzymatic hydrolysis and bioethanol fermentation of two macroalgae species. Molecules 23:174

    Google Scholar 

  • Amriani F, Salim FA, Iskandinata I, Khumsupan D, Barta Z (2016) Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem Biochem Eng Q 30:237–244

    CAS  Google Scholar 

  • Ananthi V, Prakash GS, Chang SW, Ravindran B, Nguyen DD, Vo D-VN, La DD, Bach Q-V, Wong JWC, Gupta SK (2019) Enhanced microbial biodiesel production from lignocellulosic hydrolysates using yeast isolates. Fuel 256:115932

    CAS  Google Scholar 

  • Ansari FA, Wahal S, Gupta SK, Rawat I, Bux F (2017) A comparative study on biochemical methane potential of algal substrates: implications of biomass pre-treatment and product extraction. Bioresour Technol 234:320–326

    CAS  Google Scholar 

  • Ansari FA, Gupta SK, Nasr M, Rawat I, Bux F (2018) Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: a multivariate approach. J Clean Prod 182:634–643

    CAS  Google Scholar 

  • Asogwa VC, Asogwa JN (2018) Aquatic weeds in fish culture: prevention and control practices. Am J Mar Res Rev 1:001–009

    Google Scholar 

  • Banu JR, Kannah RY, Kavitha S, Gunasekaran M, Kumar G (2018) Novel insights into scalability of biosurfactant combined microwave disintegration of sludge at alkali pH for achieving profitable bioenergy recovery and net profit. Bioresour Technol 267:281–290

    Google Scholar 

  • Banu JR, Tamilarasan K, Chang SW, Nguyen DD, Ponnusamy VK, Kumar G (2020) Surfactant assisted microwave disintegration of green marine macroalgae for enhanced anaerobic biodegradability and biomethane recovery. Fuel 281:118802

    Google Scholar 

  • Barua VB, Kalamdhad AS (2017) Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth. Bioresour Technol 227:147–154

    CAS  Google Scholar 

  • Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29

    CAS  Google Scholar 

  • Basak SK, Ali MM, Islam MS, Shaha PR (2015) Aquatic weeds of Haor area in Kishoregonj district, Bangladesh: availability, threats and management approaches. Int J Fish Aquat Stud 2:151–156

    Google Scholar 

  • Bhetalu A, Patil S, Ingole N (2012) Studies on generation of power alcohol as a non-conventional energy source from aquatic macrophytes- a critical review. J Eng Res Stud 3:9–17

    Google Scholar 

  • Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee J (ed) Advanced biofuels and bioproducts. Springer, New York, NY, pp 873–975

    Google Scholar 

  • Burton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland. pp 1–88

  • Caisova L, Gąbka M (2009) Charophytes (Characeae, Charophyta) in the Czech Republic: taxonomy, autecology and distribution. Fottea 9:1–43

    Google Scholar 

  • Chakraborty S, Santra SC (2008) Biochemical composition of eight benthic algae collected from Sunderban. Indian J Mar Sci 37:329–332

    CAS  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, Heidelberg, pp 67–93

    Google Scholar 

  • Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 5:3019–3032

    CAS  Google Scholar 

  • Cheng J, Xia A, Su H, Song W, Zhou J, Cen K (2013) Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Convers Manag 73:329–334

    CAS  Google Scholar 

  • Chojnacka K, Saeid A, Witkowska Z, Tuhy L (2012) Biologically active compounds in seaweed extracts-the prospects for the application In: The Open Conference Proceedings Journal

  • Clayton JS (1996) Aquatic weeds and their control in New Zealand Lakes. Lake Reserv Manag 12:477–486

    Google Scholar 

  • Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76

    CAS  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381

    Google Scholar 

  • Das SP, Ravindran R, Ghosh A, Deka D, Das D, Jawed M, Fontes CMGA, Goyal A (2014) Efficient pretreatment for bioethanol production from water hyacinth (Eichhornia crassipes) involving naturally isolated and recombinant enzymes and its recovery. Environ Prog Sustain Energy 33:1396–1404

    CAS  Google Scholar 

  • Das SP, Gupta A, Das D, Goyal A (2016) Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design. Int Biodeterior Biodegradation 109:174–184

    CAS  Google Scholar 

  • Dastpak H, Pasalari H, Jafari AJ, Gholami M, Farzadkia M (2020) Improvement of co-composting by a combined pretreatment Ozonation/Ultrasonic process in stabilization of raw activated sludge. Sci Rep 10:1–7

    Google Scholar 

  • Datta S (2009) Aquatic weeds and their management for fisheries. Aquat Weeds Their Manag Fish, pp 1–22

  • Davis R, Hirji R (2003) Management of Aquatic Weed, Technical Note G.4 In: Water Resource Management

  • Dwivedi M, Dwivedi AK (2018) Water hyacinth feedstock: a renewable source for bio-ethanol production. Cellulose 18:35

  • Emtiazi G, Naghavi N, Bordbar A (2001) Biodegradation of lignocellulosic waste by Aspergillus terreus. Biodegradation 12:257–261

    Google Scholar 

  • Fang Z-F, Liu K-L, Chen F-S, Zhang L-F, Guo Z (2014) Cationic surfactant-assisted microwave-NaOH pretreatment for enhancing enzymatic hydrolysis and fermentable sugar yield from peanut shells. BioResources 9:1290–1302

    Google Scholar 

  • Gallagher JE, Haller WT (1990) History and development of aquatic weed control in the United States. Rev Weed Sci 5:115–192

    CAS  Google Scholar 

  • Ganguly P, Gangwar C, Mishra A, Rani R, Awasthi S, Singh RK, Bhatnagar T (2018) Effect of Saccharification Methods on Bioethanol Production by Thermophiles from Eichhornia crassipes. Int J Curr Microbiol App Sci 7:3595–3603

    Google Scholar 

  • Ge X, Zhang N, Phillips GC, Xu J (2012) Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour Technol 124:485–488

    CAS  Google Scholar 

  • Gettys LA (2014) Aquatic weed management: control methods. SRAC Publication—Southern Regional Aquaculture Centre

  • Gupta SK, Chabukdhara M, Kumar P, Singh J, Bux F (2014) Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicol Environ Saf 110:49–55

    CAS  Google Scholar 

  • Gupta SK, Ansari FA, Nasr M, Rawat I, Nayunigari MK, Bux F (2017) Cultivation of Chlorella sorokiniana and Scenedesmus obliquus in wastewater: fuzzy intelligence for evaluation of growth parameters and metabolites extraction. J Clean Prod 147:419–430

    CAS  Google Scholar 

  • Gupta SK, Kumar NM, Guldhe A, Ansari FA, Rawat I, Nasr M, Bux F (2018) Wastewater to biofuels: comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecol Eng 117:62–68

    Google Scholar 

  • Guragain YN, De Coninck J, Husson F, Durand A, Rakshit SK (2011) Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour Technol 102:4416–4424

    CAS  Google Scholar 

  • Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241

    CAS  Google Scholar 

  • Harun MY, Radiah ABD, Abidin ZZ, Yunus R (2011) Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol 102:5193–5199

    CAS  Google Scholar 

  • Haug R (2018) The practical handbook of compost engineering. Routledge, Abington

    Google Scholar 

  • Hoevers R (2011) Aquatic biofuels for local development. FACT

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • ICID.CIID International Commission on Irrigation and drainage (2002) Aquatic Weeds & their Management. Water 65.

  • İnan B, Özçimen D (2019) A comparative study of bioprocess performance for improvement of bioethanol production from macroalgae. Chem Biochem Eng Q 33:133–140

    Google Scholar 

  • Jang J-S, Cho Y, Jeong G-T, Kim S-K (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    CAS  Google Scholar 

  • Jard G, Dumas C, Delgenes JP, Marfaing H, Sialve B, Steyer JP, Carrère H (2013) Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem Eng J 79:253–258

    CAS  Google Scholar 

  • Jayan PR, Sathyanathan N (2012) Aquatic weed classification, environmental effects and the management technologies for its effective control in Kerala, India. Int J Agric Biol Eng 5:76–91

    Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    CAS  Google Scholar 

  • Jung H, Kim J, Lee C (2016) Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: different responses in two reactors with different operating regimes. Bioresour Technol 221:366–374

    CAS  Google Scholar 

  • Kadam SU, Álvarez C, Tiwari BK, O’Donnell CP (2015) Extraction of biomolecules from seaweeds. In: Jones W (ed) Seaweed sustainability. Elsevier, Amsterdam, pp 243–269

    Google Scholar 

  • Kannah RY, Kavitha S, Banu JR, Yeom IT, Johnson M (2017) Synergetic effect of combined pretreatment for energy efficient biogas generation. Bioresour Technol 232:235–246

    CAS  Google Scholar 

  • Karray R, Hamza M, Sayadi S (2015) Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. Bioresour Technol 187:205–213

    CAS  Google Scholar 

  • Kaur M, Kumar M, Sachdeva S, Puri SK (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402

    CAS  Google Scholar 

  • Kaur M, Kumar M, Singh D, Sachdeva S, Puri SK (2019) A sustainable biorefinery approach for efficient conversion of aquatic weeds into bioethanol and biomethane. Energy Convers Manag 187:133–147

    CAS  Google Scholar 

  • Kavitha S, Jayashree C, Kumar SA, Kaliappan S, Banu JR (2014) Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production. Bioresour Technol 173:32–41

    CAS  Google Scholar 

  • Kavitha S, Banu JR, Kumar JV, Rajkumar M (2016) Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration. Bioresour Technol 217:21–27

    CAS  Google Scholar 

  • Kennish MJ, Haag SM, Sakowicz GP (2008) Seagrass demographic and spatial habitat characterization in Little Egg Harbor, New Jersey, using fixed transects. J Coast Res. https://doi.org/10.2112/SI55-0013.1

    Article  Google Scholar 

  • Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    CAS  Google Scholar 

  • Kist DL, Cano R, Sapkaite I, Pérez-Elvira SI, Monteggia LO (2020) Macrophytes as a digestion substrate. Assessment of a sonication pretreatment. Waste Biomass Valor 11(5):1765–1775

    CAS  Google Scholar 

  • Korzen L, Pulidindi IN, Israel A, Abelson AGA (2015) Single step production of bioethanol from the seaweed Ulva rigida using sonication. R Soc Chem Adv 5:16223–16229

    CAS  Google Scholar 

  • Kreuger E, Prade T, Escobar F, Svensson S-E, Englund J-E, Björnsson L (2011) Anaerobic digestion of industrial hemp–Effect of harvest time on methane energy yield per hectare. Biomass Bioenergy 35:893–900

    CAS  Google Scholar 

  • Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR (2019) Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 253:833–839

    Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    CAS  Google Scholar 

  • Lafarga T, Acién-Fernández FG, Garcia-Vaquero M (2020) Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res 48:101909

    Google Scholar 

  • Lembi CA (2009) Identifying and managing aquatic vegetation, Aquatic Plant Manage. Purdue Extension APW-3-W.

  • Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695

    CAS  Google Scholar 

  • Li H, Kjerstadius H, Tjernström E, Davidsson Å (2013) Evaluation of pretreatment methods for increased biogas production from macro algae. Sven Gastek Cent AB, SGC Rapp 278

  • Liang J, Yu Z, Chen L, Fang S, Ma X (2019) Microwave pretreatment power and duration time effects on the catalytic pyrolysis behaviors and kinetics of water hyacinth. Bioresour Technol 286:121369

    Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    CAS  Google Scholar 

  • Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    CAS  Google Scholar 

  • Madsen JD (2000) Advantages and disadvantages of aquatic plant management techniques. Environmental Laboratory, Vicksburg, MS

    Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Lipton AP (2009) Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens. Ann Microbiol 59:207–219

    CAS  Google Scholar 

  • Manns D, Andersen SK, Saake B, Meyer AS (2016) Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. J Appl Phycol 28:1287–1294

    CAS  Google Scholar 

  • Mantri VA, Kavale MG, Kazi MA (2020) Seaweed biodiversity of India: reviewing current knowledge to identify gaps, challenges, and opportunities. Diversity 12:13

    Google Scholar 

  • Martı́n C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    CAS  Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9:221

    Google Scholar 

  • Mittal R, Tavanandi HA, Mantri VA, Raghavarao K (2017) Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrason Sonochem 38:92–103

    CAS  Google Scholar 

  • Mondal D (2018) The utilization of aquatic weeds in an environmental friendly way of fish feed formulation- a review. Int Res J Environ Sci 7:60–66

    CAS  Google Scholar 

  • Montingelli ME, Benyounis KY, Stokes J, Olabi A-G (2016) Pretreatment of macroalgal biomass for biogas production. Energy Convers Manag 108:202–209

    CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  Google Scholar 

  • Mthethwa NP, Nasr M, Bux F, Kumari S (2018) Utilization of Pistia stratiotes (aquatic weed) for fermentative biohydrogen: electron-equivalent balance, stoichiometry, and cost estimation. Int J Hydrogen Energy 43:8243–8255

    CAS  Google Scholar 

  • Murdock JN, Wetzel DL (2009) FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectrosc Rev 44:335–361

    CAS  Google Scholar 

  • Nielsen HB, Heiske S (2011) Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion. Water Sci Technol 64:1723–1729

    CAS  Google Scholar 

  • O’Sullivan C, Rounsefell B, Grinham A, Clarke W, Udy J (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana) and salvinia (Salvinia molesta). Ecol Eng 36:1459–1468

    Google Scholar 

  • Ogbaga CC, Bajhaiya AK, Gupta SK (2019) Improvements in biomass production: learning lessons from the bioenergy plants maize and sorghum. J Environ Biol 40:400–406

    CAS  Google Scholar 

  • Oliveira JV, Alves MM, Costa JC (2014) Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol 162:323–330

    CAS  Google Scholar 

  • Özçimen D, Gülyurt MÖ, İnan B (2012) Algal biorefinery for biodiesel production. Biodiesel-Feedstocks production and application. Rijeka, Intech, pp 25–57

    Google Scholar 

  • Panahi HKS, Tabatabaei M, Aghbashlo M, Dehhaghi M, Rehan M, Nizami A-S (2019) Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour Technol Rep 7:100216

    Google Scholar 

  • Park J-H, Hong J-Y, Jang HC, Oh SG, Kim S-H, Yoon J-J, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    CAS  Google Scholar 

  • Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412

    CAS  Google Scholar 

  • Patil JH, AntonyRaj M, Gavimath CC (2011) Study on effect of pretreatment methods on biomethanation of water hyacinth. Int J Adv Biotechnol Res 2:143–147

    CAS  Google Scholar 

  • Peng H, Li H, Luo H, Xu J (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour Technol 130:81–87

    CAS  Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    CAS  Google Scholar 

  • Pérez J, Munoz-Dorado J, De la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Google Scholar 

  • Perez CMT, Pajares IG, Alcantara VA, Simbahan JF (2018) Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast. Biofuel Res J 5:792–797

    CAS  Google Scholar 

  • Peteiro C, Freire Ó (2012) Outplanting time and methodologies related to mariculture of the edible kelp Undaria pinnatifida in the Atlantic coast of Spain. J Appl Phycol 24:1361–1372

    Google Scholar 

  • Pirzadeh K, Ghoreyshi AA (2014) Phenol removal from aqueous phase by adsorption on activated carbon prepared from paper mill sludge. Desalin Water Treat 52:6505–6518

    CAS  Google Scholar 

  • Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:27

    Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energy 31:29–36

    CAS  Google Scholar 

  • Quitain AT, Kai T, Sasaki M, Goto M (2013) Microwave–hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Ind Eng Chem Res 52:7940–7946

    CAS  Google Scholar 

  • Ramaraj R, Unpaprom Y (2019) Enzymatic hydrolysis of small-flowered nutsedge (Cyperus difformis) with alkaline pretreatment for bioethanol production. Maejo Int J Sci Technol 13:110–120

    CAS  Google Scholar 

  • Ravanal MC, Pezoa-Conte R, von Schoultz S, Hemming J, Salazar O, Anugwom I, Lienqueo ME (2016) Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Res 13:141–147

    Google Scholar 

  • Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Res 24:8790–8804

    CAS  Google Scholar 

  • Rey JR, Rutledge R (2006) Seagrass beds of the Indian River lagoon. Accessed http://edis.ifas.ufl.edu/in189

  • Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779

    CAS  Google Scholar 

  • Roesijadi G, Copping AE, Huesemann MH, Forster J, Benemann JR (2008) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products, Battelle Pacific Northwest Division Report Number PNWD-3931

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Lab.(PNNL), Richland, WA (United States). Doi: https://doi.org/10.2172/1006310

  • Rohani-Ghadikolaei K, Abdulalian E, Ng W-K (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49:774–780

    CAS  Google Scholar 

  • Romagnoli F, Pastare L, Sabūnas A, Bāliņa K, Blumberga D (2017) Effects of pre-treatment on Biochemical Methane Potential (BMP) testing using Baltic Sea Fucus vesiculosus feedstock. Biomass Bioenerg 105:23–31

    CAS  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefining 1:147–157

    CAS  Google Scholar 

  • Rozas LP, Odum WE (1988) Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77:101–106

    Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    CAS  Google Scholar 

  • Sahoo NK, Gupta SK, Rawat I, Ansari FA, Singh P, Naik SN, Bux F (2017) Sustainable dewatering and drying of self-flocculating microalgae and study of cake properties. J Clean Prod 159:248–256

    CAS  Google Scholar 

  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Google Scholar 

  • Samaraweera AM, Vidanarachchi JK, Kurukulasuriya MS (2012) Industrial applications of macroalgae. Handbook of Marine macroalgae. Wiley, Amsterdam, pp 500–521

    Google Scholar 

  • Sarto S, Hildayati R, Syaichurrozi I (2019) Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew Energy 132:335–350

    CAS  Google Scholar 

  • Satyanagalakshmi K, Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation

  • Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–comparison of five pretreatment technologies. Bioresour Technol 140:36–42

    CAS  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    CAS  Google Scholar 

  • Sinbuathong N (2019) Predicting the increase of methane yield using alkali pretreatment for weeds prior to co-digestion. Energy Sour A 41:1124–1131

    CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–An overview. Bioresour Technol 199:76–82

    CAS  Google Scholar 

  • Sindhu R, Binod P, Mathew AK, Abraham A, Gnansounou E, Ummalyma SB, Thomas L, Pandey A (2017) Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresour Technol 242:146–151

    CAS  Google Scholar 

  • Sinegani AAS, Emtiazi G, Hajrasuliha S, Shariatmadari H (2005) Biodegradation of some agricultural residues by fungi in agitated submerged cultures. Afr J Biotechnol 4

  • Singh A, Bishnoi NR (2013) Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Ind Crops Prod 44:283–289

    CAS  Google Scholar 

  • Singh JK, Chaurasia B, Dubey A, Noguera AM, Gupta A, Kothari R, Upadhyaya CP, Kumar A, Hashem A, Alqarawi AA, Abd Allah EF (2021) Biological characterization and instrumental analytical comparison of two biorefining pretreatments for water hyacinth (Eicchornia crassipes) biomass hydrolysis. Sustainability 13:245

    CAS  Google Scholar 

  • Song W, Ding L, Liu M, Cheng J, Zhou J, Li YY (2020) Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1. Sci Total Environ 716:134695

    CAS  Google Scholar 

  • Stallings KD, Seth-Carley D, Richardson RJ (2015) Management of aquatic vegetation in the southeastern United States. J Integr Pest Manag 6:3

    Google Scholar 

  • Suleiman M, Khadija AY, Nasiru Y, Garba AA, Alhassan M, Bello HJ (2020) Proximate, minerals and anti-nutritional composition of water hyacinth (Eichhornia crassipes) grass. Earthline J Chem Sci 3:51–59

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Google Scholar 

  • Syaichurrozi I, Villta PK, Nabilah N, Rusdi R (2019) Effect of sulfuric acid pretreatment on biogas production from Salvinia molesta. J Environ Chem Eng 7:102857

    CAS  Google Scholar 

  • Tantayotai P, Mutrakulchareon P, Tawai A, Roddecha S, Sriariyanun M (2019) Effect of organic acid pretreatment of water hyacinth on enzymatic hydrolysis and biogas and bioethanol production. IOP Conf Ser Earth Environ Sci 346:12004

    Google Scholar 

  • Tapia-Tussell R, Avila-Arias J, Domínguez Maldonado J, Valero D, Olguin-Maciel E, Pérez-Brito D, Alzate-Gaviria L (2018) Biological pretreatment of mexican caribbean macroalgae consortiums using Bm-2 strain (Trametes hirsuta) and its enzymatic broth to improve biomethane potential. Energies 11:494

    Google Scholar 

  • Taseli BK (2008) Fungal treatment of hemp-based pulp and paper mill wastes. Afr J Biotechnol 7

  • Thi BTN, Thanh LHV, Lan TNP, Thuy NTD, Ju Y-H (2017) Comparison of some pretreatment methods on cellulose recovery from water hyacinth (Eichhornia crassipe). J Clean Energy Technol 5:274–279

    CAS  Google Scholar 

  • Tibbetts SM, Milley JE, Lall SP (2016) Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. J Appl Phycol 28:3575–3585

    CAS  Google Scholar 

  • Tipnee S, Ramaraj R, Unpaprom Y (2015) Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Emergent Life Sci Res 1:1–7

    Google Scholar 

  • Ugarte RA, Sharp G (2001) A new approach to seaweed management in eastern Canada: the case of Ascophyllum nodosum. Cah Biol Mar 42(1/2):63–70

    Google Scholar 

  • Valderrama D, Iyemperumal S, Krishnan M (2014) Building consensus for sustainable development in aquaculture: a delphi study of better management practices for shrimp farming in India. Aquac Econ Manag 18:369–394

    Google Scholar 

  • Vanegas CH, Hernon A, Bartlett J (2015) Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int J Ambient Energy 36:2–7

    CAS  Google Scholar 

  • Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26:901–907

    Google Scholar 

  • Vivekanand V, Eijsink VGH, Horn SJ (2012) Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J Appl Phycol 24:1295–1301

    CAS  Google Scholar 

  • Wang X, Liu X, Wang G (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. J Integr Plant Biol 53:246–252

    CAS  Google Scholar 

  • Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    CAS  Google Scholar 

  • Yan J, Wei Z, Wang Q, He M, Li S, Irbis C (2015) Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol 193:103–109

    CAS  Google Scholar 

  • Yang G, Wang J (2018) Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. Bioresour Technol 255:7–15

    CAS  Google Scholar 

  • Yazdani P, Zamani A, Karimi K, Taherzadeh MJ (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202

    CAS  Google Scholar 

  • Yin Y, Wang J (2018) Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. Bioresour Technol 268:52–59

    CAS  Google Scholar 

  • Yuan Y, Macquarrie DJ (2015) Microwave assisted acid hydrolysis of brown seaweed Ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustain Chem Eng 3:1359–1365

    CAS  Google Scholar 

  • Zhang S, Guo H, Du L, Liang J, Lu X, Li N, Zhang K (2015) Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state. Bioresour Technol 185:171–177

    CAS  Google Scholar 

  • Zhang Q, Wei Y, Han H, Weng C (2018) Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour Technol 251:358–363

    CAS  Google Scholar 

  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Zhao H (2014) Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresour Technol 163:82–91

    CAS  Google Scholar 

Download references

Acknowledgements

Mr. Shahrukh Nawaj Alam and Ms. Zaira Khalid are grateful to Central University of Jharkhand, Ranchi, Jharkhand, India for receiving UGC University fellowship. Dr. Abhishek Guldhe is thankful to Department of Biotechnology, Govt. of India for the award of Ramalingaswami Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Guldhe or Bhaskar Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.N., Khalid, Z., Guldhe, A. et al. Harvesting and pretreatment techniques of aquatic macrophytes and macroalgae for production of biofuels. Environmental Sustainability 4, 299–316 (2021). https://doi.org/10.1007/s42398-021-00178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-021-00178-6

Keywords

Navigation