Skip to main content

Advertisement

Log in

Consequences of crude oil contamination on the structure and function of autochthonous microbial community of a tropical agricultural soil

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Crude oil contamination of soil matrices is a persistent problem with deleterious consequences due to the recalcitrant, toxic and mutagenic properties of its constituents. To decipher the effects of crude oil contamination on the microbial community structure and function of an agricultural soil, field moist soil microcosms 2S (agricultural soil) and AB6 (agricultural soil polluted with crude oil) were set up. Taxonomic profiling of the two microcosms using next generation shotgun sequencing revealed massive decline in the number of recovered sequences from 3,267,616 (2S) to 250,241 (AB6). It also revealed the dominance of the phyla Actinobacteria (46.86%), and Firmicutes (51.20%) in 2S and AB6 with preponderance of Conexibacter (11.40%), and Singulisphaera (4.43%) in 2S, and Bacillus (38.52%), Sphingobium (10.51%), and Clostridium (7.06%) in AB6, respectively. Gas chromatographic fingerprints of residual crude oil in AB6 revealed complete disappearance of 50% of the hydrocarbon fractions at the end of 42 days while the others were degraded to < 6% of their initial concentrations. Functional annotation of the predicted ORFs in the two metagenomes revealed diverse metabolic features of the autochthonous microbial community. It also revealed the exclusive detection of diverse genes in AB6 metagenome responsible for degradation of various classes of hydrocarbons and the detoxification, transport and resistance to heavy metals. This study has established the deleterious effects of crude oil contamination on the microbial community structure of a tropical agricultural soil and revealed the adaptive features of the microbial community to various environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abed RM, Al-Kindi S, Al-Kharusi S (2015) Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol 69(1):95–105

    Article  CAS  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand-conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Albokari M, Mashhour I, Alshehri M, Boothman C, Al-Enezi M (2015) Characterization of microbial communities in heavy crude oil from Saudi Arabia. Ann Microbiol 65:95–104

    Article  CAS  Google Scholar 

  • Alyward FO, McDonald BR, Adams SM et al (2013) Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79:3724–3733

    Article  CAS  Google Scholar 

  • Andrew RWJ, Jackson JM (1996) Pollution and waste management. The natural environment and human impact. Longman Publishers, Singapore, pp 281–297

    Google Scholar 

  • Araujo FA, Barh D, Silva A, Guimarães L, Ramos RTJ (2018) GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data. Sci Rep 8:1794

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  Google Scholar 

  • Bossert ID, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan Publishing Co., New York, pp 435–474

    Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2002) Microbial communities in different soils do not converge after diesel contamination. J Appl Microbiol 92:276–288

    Article  CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) The genus Bacillus. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Das K, Mukherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strain; role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102:195–203

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Rev 61:47–64

    CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Towards an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Freitas TA, Li PE, Scholz MB, Chain PS (2015) Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res 43(10):e69

    Article  CAS  Google Scholar 

  • Ghai R, Martin-Cuadrado A-B, Molto AG et al (2010) Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. https://doi.org/10.1038/ismej.2010.44

    Article  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  Google Scholar 

  • Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2:94. https://doi.org/10.3389/fmicb.2011.00094

    Article  Google Scholar 

  • Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67:3610–3617

    Article  CAS  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    Article  CAS  Google Scholar 

  • Hidayati NV, Hilmi E, Haris A, Effendi H, Guiliano M, Doumenq P, Syaki AD (2011) Fluorene removal by biosurfactants producing Bacillus megaterium. Waste Biomass Valor 2(4):415–422

    Article  CAS  Google Scholar 

  • Hiraishi A (2003) Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes Environ 18(3):105–125

    Article  Google Scholar 

  • Hong HB, Chang Y-S, Choi S-D, Park Y-H (2000) Degradation of dibenzofuran by Pseudomonas putida PH-01. Water Res 34:2404–2407

    Article  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol Rev 3:0003.1–0003.8

    Google Scholar 

  • Hurtig AK, Sebastian MS (2004) Incidence of childhood leukemia and oil exploitation in the Amazon Basin of Ecuador. Int J Occup Environ Health 10:245–250

    Article  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high molecular weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbiol Biotechnol 3:132–164

    Article  CAS  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    Article  CAS  Google Scholar 

  • Kao PH, Huang CC, Hseu ZY (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khanna GP, Goyal D, Khanna S (2011) Pyrene biodegradation by Bacillus spp isolated from coal tar-contaminated soil. Bioremediat J 15(1):12–25

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic ‘‘combustion’’: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell. https://doi.org/10.1016/j.cell.2013.09.006

    Article  Google Scholar 

  • Kubicek CP, Bisett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319

    Article  CAS  Google Scholar 

  • Lai Q, Li W, Shao Z (2012) Complete genome sequence of Alkanivorax dieselolei type strain B5. J Bacteriol 194:6674

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie-2. Nat Methods 9(4):357–359

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  • Li P-E, Lo C-C, Anderson JJ et al (2017) Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res 45(1):67–80

    Article  CAS  Google Scholar 

  • Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of benzo[a]pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Brazilian J Microbiol 40:884–892

    Article  CAS  Google Scholar 

  • Lin C, Gan L, Chen ZL (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182(1–3):771–777

    Article  CAS  Google Scholar 

  • Ling J, Zhang G, Sun H, Fan Y, Ju J, Zhang C (2011) Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Sci Total Environ 409:1994–2000

    Article  CAS  Google Scholar 

  • Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 5:400–407

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:11

    Google Scholar 

  • Lo C-C, Chain PSG (2014) Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinform 15:366

    Article  Google Scholar 

  • Ludwig W, Euzéby J, Schumann G, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Parte A, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 1–28

    Google Scholar 

  • Maier RM (2009) Microorganisms and organic pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology, 2nd edn. Academic Press, London, pp 387–420

    Chapter  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D):222–226

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1997) Efficiency of endogenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol 63:2660–2664

    CAS  Google Scholar 

  • Matsumura F, Benezet HJ (1973) Studies on the bioaccumulation and microbial degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect 5:253–258

    CAS  Google Scholar 

  • Mutnuri S, Vasudevan N, Kaestner M (2005) Degradation of anthracene and pyrene supplied by microcrystals and non-aqueous-phase liquids. Appl Microbiol Biotechnol 67:569–576

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630

    Article  CAS  Google Scholar 

  • Nojiri H, Nam J-W, Kosaka M et al (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181(10):3105–3113

    CAS  Google Scholar 

  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenations. J Gen Appl Microbiol 47:279–305

    Article  CAS  Google Scholar 

  • Norris JR, Berkeley RCW, Logan NA, O’Donnell AG (1981) The genera Bacillus and Sporalactobacillus. In: Starr MP, Stolp A, Truper AG, Balows A, Schlegel HG (eds) The prokaryotes, vol 2. Springer, Berlin, pp 1711–1742

    Google Scholar 

  • Odjegba VJ, Sadiq A (2006) Effects of spent engine oil on the growth parameters, chlorophyll and protein level of Amaranthus hybridus L. Niger J Appl Sci 7:1–46

    Google Scholar 

  • Okoh AI (2006) Biodegradation alternative in the clean-up of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50

    Google Scholar 

  • Parks DH, Tyson GW, Hugenhiltz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Article  CAS  Google Scholar 

  • Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  CAS  Google Scholar 

  • Perez-Pentoja D, Donoso R, Agullo L, Cordova M, Seeger M, Pieper DH, Gonzalez B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14(5):1091–1117

    Article  CAS  Google Scholar 

  • Philp JC, Whiteley AS, Ciric L, Bailey MJ (2005) Monitoring bioremediation. In: Atlas RM, Philp J (eds) Bioremediation: applied solution for a real-world environmental clean-up. ASM Press, Washington, DC, pp 237–268

    Chapter  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T (2004) Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett 238:297–305

    CAS  Google Scholar 

  • Popp N, Schlomann M, Margit M (2006) Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon contaminated soils. Microbiology 152:3291–3304

    Article  CAS  Google Scholar 

  • Powlowski J, Sealy J, Shingler V, Cadieux E (1997) On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. CF600. J Biol Chem 272:945–951

    Article  CAS  Google Scholar 

  • Quesen JF III, Matsumura F (1983) Oxidative degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by microorganisms. Environ Toxicol Chem 2:261–268

    Article  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 781–797

    Chapter  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK et al (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  • Salam LB (2016) Metabolism of waste engine oil by Pseudomonas species. 3 Biotech 6:98

    Article  Google Scholar 

  • Salam LB (2018) Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bull Natl Res Cent 42:10

    Article  Google Scholar 

  • Salam LB, Ishaq A (2019) Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 9:46

    Article  Google Scholar 

  • Salam LB, Obayori OS (2014) Fluorene biodegradation potentials of Bacillus strains isolated from tropical hydrocarbon-contaminated soils. Afr J Biotechnol 13(14):1554–1559

    Article  CAS  Google Scholar 

  • Salam LB, Ilori MO, Amund OO (2015) Carbazole degradation in the soil microcosm by tropical bacterial strains. Braz J Microbiol 46(4):1037–1044

    Article  CAS  Google Scholar 

  • Salam LB, Obayori OS, Akashoro OS, Okogie GO (2011) Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. Int J Agric Biol 13:245–250

    CAS  Google Scholar 

  • Salam LB, Obayori OS, Nwaokorie FO, Suleiman A, Mustapha R (2017) Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res 24:7139–7159

    Article  CAS  Google Scholar 

  • Salam LB, Ilori MO, Amund OO, LiiMien Y, Nojiri H (2018) Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. Environ Technol 39(7):939–951

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7:102. https://doi.org/10.1007/s13205-017-0736-3

    Article  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  Google Scholar 

  • Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814

    Article  CAS  Google Scholar 

  • Shuyu H, Qingmin Z, Miao D, Yang Z, Hongwen S (2007) Optimized cultivation of highly-efficient degradation bacterial strains and their degradation ability towards pyrene. Front Biol China 2(4):387–390

    Article  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  Google Scholar 

  • Silva MS, Sales AN, Magalhaes-Guedes KT, Dias DR, Scwan RF (2013) Brazillian cerrado soil actinobacterial ecology. Biomed Res Int 503805:10. https://doi.org/10.1155/2013/503805

    Article  Google Scholar 

  • Slepecky RA (1972) Ecology of bacterial spore formers. In: Halvorson HG, Hanson R, Campbell LL (eds) Spores V. American Society for microbiology, Washington DC, pp 297–313

    Google Scholar 

  • Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Ant Van Leeu 84:193–200

    Article  CAS  Google Scholar 

  • Story SP, Parker SH, Kline JD, Tzeng TJ, Mueller JG, Kline EL (2000) Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var EPA505. Gene 260:155–169

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    Article  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Jordanov B, Nikolova-Damyanova B, Petrov P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch 60c:577–585

    Article  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophs. Biores Technol 97:1237–1242

    Article  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonsas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiol 147:1621–1630

    Article  Google Scholar 

  • van Berkel WJ, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  CAS  Google Scholar 

  • van Hamme J, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vollmers J, Wiegand S, Kaster A-K (2017) Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective-not only size matters! PLoS One 12(1):e0169662

    Article  CAS  Google Scholar 

  • Walter MV, Nelson EC, Firmstone G, Martin DG, Clayton MJ, Simpson S, Spaulding S (1997) Surfactant enhances biodegradation of hydrocarbons: microcosm and field study. J Soil Contam 6:61–77

    Article  CAS  Google Scholar 

  • Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4(116):1–7

    Google Scholar 

  • Woebken D, Teeling H, Wecker P et al (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycetes genomes. ISME J. https://doi.org/10.1038/ismej.2007.63

    Article  Google Scholar 

  • Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46

    Article  Google Scholar 

  • Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China–Russia crude oil pipeline route. PLoS One 9(5):e96552

    Article  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058. https://doi.org/10.1371/journal.pone.0030058

    Article  CAS  Google Scholar 

  • Zhang DC, Mortelmaier C, Margesin R (2012) Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci Total Environ 421–422:184–196

    Article  CAS  Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lateef B. Salam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B., Idris, H. Consequences of crude oil contamination on the structure and function of autochthonous microbial community of a tropical agricultural soil. Environmental Sustainability 2, 167–187 (2019). https://doi.org/10.1007/s42398-019-00058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00058-0

Keywords

Navigation