Skip to main content
Log in

Evaluation of biological efficiency, nutrient contents and antioxidant activity of Pleurotus pulmonarius enriched with Zinc and Iron

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Edible mushrooms (Pleurotus pulmonarius) were supplemented with essential elements to enhance their functional activities and to combat the symptoms of nutrient deficiency. In this study, nutrient contents of cultivated mushrooms were determined, scavenging activity of mushroom extract were tested against free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl ion (OH) and nitric oxide (NO). The biological efficiency of non-fortified mushroom (48.8%), mushroom fortified with Fe (47.7%) or Zn (46.8%) were not significantly different (p < 0.05). Simultaneous addition of Zn and Fe salts increase mushroom ash content to 5.6%. Mushroom fortified with Zn had the highest protein content (16.8%). Mushroom from substrate supplemented with iron sulfate and zinc sulfate have the highest iron content of 417.6 mg/100 g and the highest zinc of 349.5 mg/100 g, respectively. Extract from mushroom supplemented with Zn alone and Zn + Fe have similar (p < 0.05) phenolic content of 15.80 GAE/g of extract and 16.71 mg GAE/g of extract, respectively. Ethanolic extract from mushroom fortified with Zn has the highest scavenging activity (96.3%) against DPPH radicals when compared (p < 0.05) to other mushroom extracts. Scavenging activity of extract from mushroom fortified with Zn (96.8%) and butylated hydroxytoluene (97.1%) against NO were similar (p < 0.05). Supplementation of edible mushrooms with iron or zinc alone did not reduce their yield, nutrient contents and bio-functional activity. Bio-enriched mushrooms can therefore, serve as food supplement rich in antioxidants as well as source of macro- and micro-elements that can be used to eliminate incidence of ailments associated with mineral deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci Official J Isfahan Univ Med Sci 19(2):164–174

    Google Scholar 

  • Almeida SM, Umeo SH, Marcante RC, Yokota ME, Valle JS, Dragunski DC, Colauto NB, Linde GA (2015) Iron bioaccumulation in mycelium of Pleurotus ostreatus. Braz J Microbiol 46(1):195–200. https://doi.org/10.1590/S1517-838246120130695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (2012) Official methods of analysis, 19th edn. Association of Official Analytical Chemists

    Google Scholar 

  • Bindschedler S, Cailleau G, Verrecchia E (2016) Role of fungi in the biomineralization of calcite. Minerals 6(2):41. https://doi.org/10.3390/min6020041

    Article  CAS  Google Scholar 

  • Blanco-Rojo R, Vaquero MP (2019) Iron bioavailability from food fortification to precision nutrition. A review. Innov Food Sci Emerg Technol 51:126–138

    Article  CAS  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman SJ (1994) The uptake of zinc by selected mushroom fungi. Thesis submitted in partial fulfilment of the requirement for the degree of M. Phil. The Chinese University of Hong Kong

    Google Scholar 

  • Cherasse Y, Urade Y (2017) Dietary zinc acts as a sleep modulator. Intern J Mol Sci 18(11):2334. https://doi.org/10.3390/ijms18112334

    Article  CAS  Google Scholar 

  • Ems T, St. Lucia K, Huecker MR (2020). Biochemistry, iron absorption. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK448204/

  • Fallah A, Mohammad-Hasani A, Colagar AH (2018) Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infert 19(2):69–81

    Google Scholar 

  • Gasecka M, Mleczek M, Siwulski M, Niedzielski P (2016) Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242:723–732. https://doi.org/10.1007/s00217-015-2580-1

    Article  CAS  Google Scholar 

  • Goff JP (2018) Invited review: mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 101:2763–2813

    Article  CAS  Google Scholar 

  • Gyamfi MA, Yonamine M, Aaniya Y (1999) Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguine on experimentally induced liver injuries. General Pharmacol 32:661–667

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple ‘Test-Tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  Google Scholar 

  • Ho L-H, Zulkifli NA, Tan T-C (2020) Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. In: Passari AK, Sánchez S (eds) An introduction to mushroom. IntechOpen

    Google Scholar 

  • Jagetia GC, Baliga MS (2004) The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. J Med Food 7(3):343–348

    Article  Google Scholar 

  • Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130(5):378S-1383S. https://doi.org/10.1093/jn/130.5.1378S

    Article  Google Scholar 

  • Matute RG, Serra A, Figlas D, Curvetto N (2011) Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum. J Med Food 14(10):1273–1279. https://doi.org/10.1089/jmf.2010.0206

    Article  CAS  PubMed  Google Scholar 

  • Meda A, Lamien CE, Romito M, Milligo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Burkinafaso honey as well as their radical scavenging activity. Food Chem 19:571–577

    Article  Google Scholar 

  • Meniqueti AB, Ruiz SP, Faria MGI, Do Valle JS, Gonçalves AC Jr, Dragunski DC, Colauto NB (2020) Iron-enriched mycelia of edible and medicinal basidiomycetes. Environ Technol. https://doi.org/10.1080/09593330.2020.1824023

    Article  PubMed  Google Scholar 

  • Mleczek M, Siwulski M, Rzymski P et al (2017) Cultivation of mushrooms for production of food biofortified with lithium. Eur Food Res Technol 243:1097–1104. https://doi.org/10.1007/s00217-016-2823-9

    Article  CAS  Google Scholar 

  • Nakalembe I, Kabasa JD, Olila D (2015) Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones. Uganda Springerplus 4:433. https://doi.org/10.1186/s40064-015-1188-z

    Article  CAS  PubMed  Google Scholar 

  • Nile SH, Park SW (2014) Total, soluble, and insoluble dietary fibre contents of wild growing edible mushrooms. Czech J Food Sci 32:302–307

    Article  CAS  Google Scholar 

  • Ogidi CO, Nunes MD, Oyetayo VO, Akinyele BJ, Kasuya MCM (2016) Mycelial growth, biomass production and iron uptake by mushrooms of Pleurotus species cultivated on Urochloa decumbens (Stapf) RD Webster. J Food Res 5(3):13–19

    Article  CAS  Google Scholar 

  • Ogidi CO, Akindulureni ED, Agbetola OY, Akinyele BJ (2020) Calcium bioaccumulation by Pleurotus ostreatus and Lentinus squarrosulus cultivated on palm tree wastes supplemented with calcium-rich animal wastes or calcium salts. Waste Biomass Valor 11:4235–4244. https://doi.org/10.1007/s12649-019-00760-4

    Article  CAS  Google Scholar 

  • Petry N, Olofin I, Boy E, Donahue Angel M, Rohner F (2016) The effect of low dose iron and zinc intake on child micronutrient status and development during the first 1000 days of life: a systematic review and meta-analysis. Nutrients 8(12):773. https://doi.org/10.3390/nu8120773

    Article  CAS  PubMed Central  Google Scholar 

  • Poniedziałek B, Mleczek M, Niedzielski P, Siwulski M, Gasecka M, Kozak L, Komosa A, Rzymski P (2017) Bio-enriched Pleurotus mushrooms for deficiency control and improved antioxidative protection of human platelets? Eur Food Res Technol 243:2187–2198

    Article  Google Scholar 

  • Poursaeid N, Azadbakht A, Balali GR (2015) Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Appl Biochem Biotechnol 175:3387–3396

    Article  CAS  Google Scholar 

  • Raman J, Jang K-Y (2020) Cultivation and nutritional value of prominent Pleurotus spp: an overview. Mycobiolgy. https://doi.org/10.1080/12298093.2020.1835142

    Article  Google Scholar 

  • Rzymski P, Niedzielski P, Siwulski M et al (2017) Lithium biofortification of medicinal mushrooms Agrocybe cylindracea and Hericium erinaceus. J Food Sci Technol 54:2387–2393. https://doi.org/10.1007/s13197-017-2679-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheid SS, Faria MI, Velasquez LG, Dovalle JS, Gonçalves AC Jr, Dragunski DC, Colauto NB, Linde GA (2020) Iron biofortifcation and availability in the mycelial biomass of edible and medicinal basidiomycetes cultivated in sugarcane molasses. Sci Rep 10:12875

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Cioalteau Reagents. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Siwulski M, Mleczek M, Rzymski P et al (2017) Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometer (ICP-OES). Food Anal Methods 10:487–496

    Article  Google Scholar 

  • Umeo SH, Iecher Faria MG, Vilande Simone SSS, Dragunski DC, Dovalle JS, Colauto NB, Linde GA (2019) Iron and zinc mycelial bioaccumulation in Agaricus subrufescens strains. Semina Ciências Agrárias 40(6):2513–2522

    Article  CAS  Google Scholar 

  • Umeo SH, Faria MGI, Dragunski DC, Valle JS, Colauto NB, Linde GA (2020) Iron or zinc bioaccumulated in mycelial biomass of edible basidiomycetes. An Acad Bras Cienc 92:20191350. https://doi.org/10.1590/0001-3765202020191350

    Article  CAS  Google Scholar 

  • Vieira PAF, Gontijo DC, Vieira BC, Fontes EA, De Assunção LS, Leite J, Oliveira MGDA, Kasuya MCM (2013) Antioxidant activities, total phenolics and metal contents in Pleurotus ostreatus mushrooms enriched with iron, zinc or lithium. LWT 54:421–425

    Article  Google Scholar 

  • Yokota M, Frison P, Marcante R, Jorge LF, Valle JS, Dragunski DC, Colauto NB, Linde GA (2016) Iron translocation in Pleurotus ostreatus basidiocarps: production, bioavailability, and antioxidant activity. Gen Mol Res 15(1):1–10

    Article  Google Scholar 

  • Zięba P, Kała K, Włodarczyk A, Szewczyk A, Kunicki E, Sękara A, Muszyńska B (2020) Selenium and zinc biofortification of Pleurotus eryngii mycelium and fruiting bodies as a tool for controlling their biological activity. Molecules 25(4):889. https://doi.org/10.3390/molecules25040889

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Olusola Ogidi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyetayo, V.O., Ogidi, C.O., Bayode, S.O. et al. Evaluation of biological efficiency, nutrient contents and antioxidant activity of Pleurotus pulmonarius enriched with Zinc and Iron. Indian Phytopathology 74, 901–910 (2021). https://doi.org/10.1007/s42360-021-00410-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00410-7

Keywords

Navigation