Indian Phytopathology

, Volume 71, Issue 3, pp 365–375 | Cite as

Sexuality and compatibility of Bipolaris sorokiniana and segregation pattern in teleomorph (Cochliobolus sativus): geographic origin and segregation ratio

  • S. SultanaEmail author
  • S. K. Adhikary
  • S. M. Mahbubur Rahman
  • M. M. Islam
Research Article


Bipolaris sorokiniana causes leaf blotch of wheat, inflicting substantial grain yield losses in worldwide. Knowledge of sexual recombination of the fungal pathogen can help to implement effective disease management strategies. Randomly selected 51 isolates of B. sorokiniana was studied to test compatibility with all possible combinations. Six most fertile crosses were found, among them two combinations (BS-81 x BS-83 and BS-60 x BS-134) produced abundant pseudothecia with mature and viable ascospores. This result disclosed that most compatible isolates belonging in the Lower and High Ganges river floodplain area of Bangladesh. One hundred and fifty ascospores were examined to evaluate morphological segregation pattern. Morphological characters (ascospores color, shape, size, Septation number and colony color) of ascospores reject the null hypothesis. A clear 3:1 and 9:7 segregation ratios for ascospores color, mycelial colony color, shape of ascospores; and size of ascospores, septation number of ascospores were found in F2 progeny. RAPD technique was tested to determine molecular segregation pattern in 75 F2 progeny following reproducible polymorphic prominent bands. After test of independence, each trait showed significant and fit to the 1:1 segregation ratio expected for Mendelian trait.


Bipolaris sorokiniana Compatibility Segregation pattern Sexual reproduction 



The authors are thankful to the ministry of education, Bangladesh for financial support to conduct this study.

Supplementary material

42360_2018_66_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)
42360_2018_66_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)


  1. Alam KB, Banu SP, Shaheed MA (1998) The occurrence and significance of spot blotch disease in Bangladesh. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Proceedings of international workshop on helminthosporium disease of wheat: spot blotch and tan spot. CIMMYT, El Batan, pp 63–66Google Scholar
  2. Bhatta MR, Pokharel DR, Devkota RN, Dution HJ, Mudwari A, Bimb HP, Thapa BR, Sah BP, Bhandhari D (1998) Breeding for Helminthosporium blight resistance in Nepal: strategy followed by the national wheat research program and genetic gains. In: Duveiller E, Dubin HJ, Reves J, McNab A (eds) Helminthosophism disease of wheat: spot blotch and tan spot. CIMMYT, Mexico, pp 9–14Google Scholar
  3. Bucci G, Menozzi P (1993) Segregation analysis of random amplified polymorphic DNA (RAPD) markers in Piceaabies Karst. Mol Ecol 2:227–232. CrossRefPubMedGoogle Scholar
  4. Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 87:664–669CrossRefPubMedGoogle Scholar
  5. Christensen JJ (1925) Physiology specialization and mutation in Helminthosporium sativum. Phytopathology 15:785–795Google Scholar
  6. Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420:664–666CrossRefPubMedGoogle Scholar
  7. Condon BJ, Leng Y, Wu D et al (2013) Comparative genome structure, secondary metabolite, and effector coding capacity a cross Cochliobolus pathogens. PLoS Genet 9:e1003233CrossRefPubMedPubMedCentralGoogle Scholar
  8. Condon BJ, Wu D, Krasevec N et al (2014) Comparative genomics of Cochliobolus phytopathogens. In: Dean RA, Lichens-Park A, Kole C (eds) Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin, pp 41–67Google Scholar
  9. De Milliano WAG, Zadoks JC (1985) The effect of early foliar infection by Helminthosporium sativum on some yield components of two African Wheat. Wheat for more tropical environments. A proceeding of the international symposium. CMMYT, Mexico, pp 154–157Google Scholar
  10. De Visser JAGM, Elena SF (2007) The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8(2):139–149. CrossRefPubMedGoogle Scholar
  11. Dubin HJ, Van Ginkel M (1991) The status of wheat disease and disease research in warmer areas. In: Sanders DA (ed) Wheat for the non-traditional warm areas. A proceeding of the international conference. CIMMYT, Mexico, pp 125–145Google Scholar
  12. Duveiller E, Gilchrist LI (1994) Production constraints due to Bipolaris sorokiniana in wheat: current situation and future prospects. In: Saunders DA, Hettel GP (eds) Wheat in heat stressed environments: integrated, dry areas and rice-wheat farming systems. CIMMYT, Mexico, pp 343–352Google Scholar
  13. Goddard MR, Godfray HCJ, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434(7033):636–640. CrossRefPubMedGoogle Scholar
  14. Gupta PK, Chand R, Vasistha NK, Pandey SP, Kumar U, Mishra VK, Joshi AK (2018) Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathol 67:508–531CrossRefGoogle Scholar
  15. Heitman J (2006) Sexual reproduction and the evolution of microbial pathogens. Curr Biol 16(17):711–725. CrossRefGoogle Scholar
  16. Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe Rev 8:86–99CrossRefGoogle Scholar
  17. Horsford RM, Solangi GRM, Kiesling RL (1975) Inheritance in Cochliobolus sativus. Phytopathology 65:699–703CrossRefGoogle Scholar
  18. Joshi AK, Mishra B, Chatrath R, Ortiz Ferrara G, Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446CrossRefGoogle Scholar
  19. Kandan A (2013) Molecular and phenotypic characterization of Ganoderma lucidum infecting palms and forest trees in India. Vegetos 26(2):344–352Google Scholar
  20. Kar DK, Halder S (2010) Plant breeding biometry biotechnology. New Central Book Agency (p) Ltd, New DelhiGoogle Scholar
  21. Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276. CrossRefPubMedGoogle Scholar
  22. Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E (2011) The chastity of amoebae: reevaluating evidence for sex in amoeboid organisms. Proc Biol Sci 278:2081–2090CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee BTO, Pateman JA (1959) Linkage of polygenes controlling size of ascospore in Neurospora Crassa. Nature 183(4662):698–699. CrossRefGoogle Scholar
  24. Lin K-H, Lo H-F, Lee S-P, George Kuo C, Chen J-T, Yeh W-L (2006) RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 143:142–154. CrossRefPubMedGoogle Scholar
  25. Litvintseva AP, Marra RE, Nielsen K, Heitman J, Vilgalys R, Mitchell TG (2003) Evidence of sexual recombination among Cryptococcus neoformans sero-type A isolates in sub-Saharan Africa. Eukaryot Cell 2:1162–1168. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mahto BN, Gurung S, Nepal A, Adhikari TB (2012) Morphological, pathological and genetic variations among isolates of Cochliobolus sativus from Nepal. Eur J Plant Pathol 133:405–417. CrossRefGoogle Scholar
  27. Masratul Hawa M, Salleh B, Latiffah Z (2013) Characterization and pathogenicity of Fusarium proliferatum causing stem rot of Hylocereuspolyrhizus in Malaysia. Ann Appl Biol 163:269–280. CrossRefGoogle Scholar
  28. McDonald B, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. CrossRefPubMedGoogle Scholar
  29. McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS (2017) The discovery of the virulence gene ToxA in the wheat andbarley pathogen Bipolaris sorokiniana. Mol Plant Pathol. CrossRefPubMedGoogle Scholar
  30. Mehta YR (1993) Spot blotch (Bipolaris Sorokiniana). In: Mathur SB, Cunfer BM (eds) Seed borne disease and seed health testing of wheat. Institute of Seed Pathology for Developing Countries, Copenhagen, pp 105–112Google Scholar
  31. Miller RG Jr (1981) Simultaneous statistical inference. Springer, New YorkCrossRefGoogle Scholar
  32. Morita A, Saitoh Y, Izumitsu K, Tanaka C (2012a) Teleomorph formation of Setosphaeria monoceras, a perfect state of Setosphaeria monoceras, by Japanese isolates. Mycoscience 53(2):144–146. CrossRefGoogle Scholar
  33. Morita A, Saitoh Y, Izumitsu K, Tanaka C (2012b) Molecular organization of the mating type (Mat) locus of Exserohilum monoceras (Setosphaeria monoceras) a bioherbicide agent for Echinochloa weeds. Mycoscience 53:92–101. CrossRefGoogle Scholar
  34. Raemakers RH (1988) Helminthosporium sativum: disease complex on wheat and sources of resistance in Zambia. In: Klatt AR (ed) Wheat production constraints in tropical environment. Mexico DF, Cimmyt, pp 175–186Google Scholar
  35. Ragiba M, Prabhu KV, Singh RB (2004) Recessive genes controlling resistance to Helminthosporium leaf blight in synthetic hexaploid wheat. J Plant Pathol 93:251–262Google Scholar
  36. Raju NB, Perkins DD (1978) Barren perithecia in Neurospora crassa. Can J Genet Cytol 20:41–59. CrossRefGoogle Scholar
  37. Raper JR (1966) Genetics of sexuality in higher fungi. Ronald Press, New YorkGoogle Scholar
  38. Sharma RC, Duveiller E (2006) Spot blotch continues to cause substantial grain yield reductions under resource-limited farming conditions. J Phytopathol 154(7–8):482–488. CrossRefGoogle Scholar
  39. Shoemaker RA (1955) Biology, cytology and taxonomy of Cochliobolus sativus. Can J Bot 33:562–576CrossRefGoogle Scholar
  40. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman and Company, San FranciscoGoogle Scholar
  41. Tanaka Y, Murata N, Kato H (1979) Behavior of nuclei and chromosomes during ascus development in the mating between either rice-isolate or weeping love grass-isolate and Ragi isolate of Pyricularia. Ann Phytopathol Soc Jpn 45:182–191. CrossRefGoogle Scholar
  42. Taylor JW, Geiser DM, Burt A, Koufopanou V (1999) The evolutionary biology and population genetics underlying fungal isolate typing. Clin Microbiol Rev 12:126–146CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tinline RD (1951) Studies on the perfect stage of Helminthosporium sativum. Can J Bot 29:467–478CrossRefGoogle Scholar
  44. Tinline RD (1962) Cochliobolus sativus V. Heterokayosis and parasexualtiy. Can J Bot 40:425–437CrossRefGoogle Scholar
  45. Tinline RD, Dickson JG (1958) Cochliobolus sativus. I. Perithecial development and inheritance of spore color and mating type. Mycologia 50:697pCrossRefGoogle Scholar
  46. Turgeon BG (1998) Application of mating type gene technology to problems in fungal biology. Annu Rev Phytopathol 36:115–137. CrossRefPubMedGoogle Scholar
  47. Valjavec-Gratian M, Steffenson BJ (1997) Genetics of virulence in Cochliobolus sativus and resistance in barley. Phytopathology 87(11):1140–1143. CrossRefPubMedGoogle Scholar
  48. Van Ginkel M, Rajaram S (1998) Breeding for resistance to spot blotch in wheat: global perspective. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosophism diseases of wheat: spot blotch and tan spot. CIMMYT, Mexico, pp 162–170Google Scholar
  49. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  50. Zhong S, Steffenson BJ (2001) Genetic and molecular characterization of mating-type genes in Cochliobolus sativus. Mycologia 93:852–863CrossRefGoogle Scholar

Copyright information

© Indian Phytopathological Society 2018

Authors and Affiliations

  1. 1.Khulna UniversityKhulnaBangladesh

Personalised recommendations