Indian Phytopathology

, Volume 71, Issue 3, pp 325–335 | Cite as

Functional expression of MAP kinase TiHOG1 gene in Tilletia indica inciting Karnal bunt of wheat

  • Malkhan Singh GurjarEmail author
  • Abhimanyu Jogawat
  • Sapna Sharma
  • Rashmi Aggarwal
Research Article


Tilletia indica is an important quarantined fungal pathogen inciting Karnal bunt disease of wheat. In fungal pathogens, the Hog1-type MAPK is involved in response to various stresses and virulence. In the present study,we identified, characterized and analyzed functional expression of the TiHog1-type gene. As HOG1 homologous genes are salt-inducible, the TiHOG1 gene (1104 bp) was amplified in 1 M NaCl stressed condition in T. indica; cloned in pJET2.0 cloning vector. The TiHOG1 gene was subcloned in expression vector (pRS426Gpd plasmid) and sequences were analyzed. The TiHOG1 in pRS426GPD (pRS426GPD-TiHOG1) was expressed functionally in heterologous system (Saccaromyces cerevisiae). TiHOG1 protein exhibits high amino acid similarity with the homologous protein sequences in Tilletia caries, Ustilago maydis and Puccinia graminis f. sp. tritici. Functional expression of TiHOG1 in S. cerevisiaehog1 mutant showed that TiHOG1 was restored salinity stress tolerance up to 1 M NaCl, 1 M KCl, 0.25 CsCl2, 0.5 M MgCl2 and 0.5 M CaCl2 and osmostress tolerance up to 1 M sorbitol and 1 M sucrose. The expression of TiHOG1 was elicited up to 19.81-fold in response to a susceptible host, whereas resistant host factors showed 9.65-fold transcripts. This first study revealed involvement of a TiHOG1 gene in stress tolerance and may have a role in pathogenesis of T. indica (Karnal bunt of wheat).


Tilletia indica Karnal bunt Wheat HOG1-type mitogen-activated protein kinase Stress tolerance Functional expression 



This work is financially supported by the Indian Council of Agricultural Research (ICAR) -Consortium Research Platform (CRP) on Genomics (ICAR-G/CRP-Genomics/2015-2720/IARI-12-151). We are highly thankful to the Director, Joint Director (Research), ICAR-IARI, New Delhi for providing guidance and facilities for carrying out this study.


  1. Adam AL, Kohut G, Hornok L (2008) Fphog1, a HOG-type MAP kinase gene, is involved in multistress response in Fusarium proliferatum. J Basic Microbiol 48(3):151–159CrossRefPubMedGoogle Scholar
  2. Aggarwal R, Tripathi A, Yadav A (2010) Pathogenic and genetic variability in Tilletia indica monosporidial culture lines using universal rice primer-PCR. Eur J Plant Pathol 128(3):333–342CrossRefGoogle Scholar
  3. Bonde MR, Berner DK, Nester SE, Petersonm GL, Olsen MW, Cunfer BM, Sim T (2004) Survival of Tilletia indica teliospores in different soils. Plant Dis 88(4):316–324CrossRefGoogle Scholar
  4. Brewster JL, Devaloir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259(5102):1760–1763CrossRefPubMedGoogle Scholar
  5. Carris LM, Castlebury LA, Goates BJ (2006) Nonsystemic bunt fungi-Tilletia indica and T. horrida: a review of history, systematics, and biology. Annu Rev Phytopathol 44:113–133CrossRefPubMedGoogle Scholar
  6. Du C, Sarfati J, Latge JP, Calderone R (2006) The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol 44(3):211–218CrossRefPubMedGoogle Scholar
  7. Gietz RD, Woods RA (1994) High efficiency transformation with lithium acetate. In Johnston JR (ed) Molecular genetics of yeast: a practical approach. Oxford University Press, Oxford, pp 121–134Google Scholar
  8. Goates BJ, Jackson EW (2006) Susceptibility of wheat to Tilletia indica during stages of spike development. Phytopathol 96(9):962–966CrossRefGoogle Scholar
  9. Gostinc C, Lenassi M, Gunde-Cimerman N, Plemenitas A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96CrossRefGoogle Scholar
  10. Gupta AK, Joshi GK, Seneviratne JM, Pandey D, Kumar A (2013) Cloning, in silico characterization and induction of TiKpp2 MAP kinase in Tilletia indica under the influence of host factor (s) from wheat spikes. Mol Biol Rep 40(8):4967–4978CrossRefPubMedGoogle Scholar
  11. Gurjar MS, Jogawat A, Kulshresta D, Sharma S, Aggarwal R (2016) Intraspecific variation of Tilletia indica isolates causing Karnal bunt of wheat in India. Indian Phytopathol 69(4):352–356Google Scholar
  12. Gurjar MS, Aggarwal R, Sharma S, Kulshreshtha D, Gupta A, Gogoi R, Thirumalaisamy PP, Saini A (2017) Development of real time PCR assay for the detection and quantification of teliospores of Tilletia indica causing Wheat Karnal bunt in soil. Indian J Exp Biol 55(6):549–554Google Scholar
  13. Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24(4):1327–1351CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jogawat A, Vadassery J, Verma N, Oelmuller R, Dua M, Nevo E, Johri AK (2016) PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 6:36765CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kamper J, Kahmann R, Bolker M, Ma LJ et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101CrossRefPubMedGoogle Scholar
  16. Kim J, Oh J, Sung GH (2016) MAP kinase Hog1 regulates metabolic changes induced by hyperosmotic stress. Front Microbiol 7:732PubMedPubMedCentralGoogle Scholar
  17. Kumar S, Stecher G, Tamura K (2016) MEGA7 molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leng YQ, Zhong SB (2015) The role of mitogen-activated protein (MAP) kinase signaling components in the fungal development, stress response and virulence of the fungal cereal pathogen Bipolaris sorokiniana. PLoS One 10(5):e0128291CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mitra M (1931) A new bunt on wheat in India. Ann Appl Biol 18(2):178CrossRefGoogle Scholar
  20. Moriwaki A, Kubo E, Arase S, Kihara J (2006) Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 257(2):253–261CrossRefPubMedGoogle Scholar
  21. Mumberg D, Mailer R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122CrossRefPubMedGoogle Scholar
  22. Po LI, Gong X, Hui JIA, Fan Y, Zhang Y, Cao Z, Hao Z, Han J, Gu S, Dong J (2016) MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica. J Integr Agric 15(12):2786–2794CrossRefGoogle Scholar
  23. Rana M, Arora C, Ram B, Kumar A (2001) Floret specificity of Karnal bunt infection due to presence of fungal growth-promotory activity in wheat spikes. J Plant Biol 28(3):283–290Google Scholar
  24. Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11(13):4705–4713CrossRefPubMedPubMedCentralGoogle Scholar
  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  26. Singh DV, Gogoi R (2011) Karnal bunt of wheat (Triticum sp.): a global scenario. Indian J Agric Sci 81(1):3–14Google Scholar
  27. Thirumalaisamy PP, Singh DV (2012) Variability of Indian isolates of Tilletia indica assessed by pathogenicity and molecular markers. J Phytopathol 160(10):525–531CrossRefGoogle Scholar
  28. Wang Y, Tian L, Xiong D, Klosterman SJ, Xiao S, Tian C (2016) The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae. Fungal Genet Biol 88:13–23CrossRefPubMedGoogle Scholar
  29. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180CrossRefPubMedGoogle Scholar
  30. Yu D, Li R, Yu Z, Cao Z (2016) Molecular characterization of a Hog1-type MAPK, Mlp Hog 1, from Melampsora larici-populina. Phytoparasitica 44(2):251–259CrossRefGoogle Scholar
  31. Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen activated protein kinase homologue. Appl Environ Microbiol 68(2):532–538CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhao XH, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6(10):1701–1714CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zheng DW, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR (2012) The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 7(11):e49495CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zheng D, Wang Y, Han Y, Xu JR, Wang C (2016) UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep 6:srep24824CrossRefGoogle Scholar

Copyright information

© Indian Phytopathological Society 2018

Authors and Affiliations

  • Malkhan Singh Gurjar
    • 1
    Email author
  • Abhimanyu Jogawat
    • 1
  • Sapna Sharma
    • 1
  • Rashmi Aggarwal
    • 1
  1. 1.Fungal Molecular Biology Laboratory, Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations