Skip to main content
Log in

Design and Performance Analysis of Normally -Off Extended Gate (AlGa)2O3/Ga2O3 High Electron Mobility Transistor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium oxide (Ga2O3) based HEMTs have emerged as a optimistic technology for high-power and - frequency usage. Ga2O3 is a wide bandgap semiconductor with attractive properties such as a large bandgap, high breakdown voltage, and high electron mobility. Ga2O3 -based HEMTs utilize a heterostructure design, where a Ga2O3 layer serves as the channel material. The proposed device architecture has been designed and simulated with Silvaco- Atlas. The HEMT employs Ga2O3 as a substrate wih Ga2O3 buffer layer and Al2O3 as dielectric providing insulation to (AlGa)2O3 layer and the gate contacts and also improving the breakdown voltage of the device The optimization process involves considering different gate and varying the work function at gate which results in Threshold Voltage, Transconductance, better switching speeds, reduction in parasitics and power consumption and overall efficiency of the device. It is observed that the proposed device results in better a Ion/Ioff ratio of 8.92*1010 and Threshold Voltage of 2.4 V and Ion value of 0.00012 A/µm. The breakdown Voltage of the device has been found to be 236 V and output power density of 2.92 KW resulting the device to work at high voltage and high-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Yes.

References

  1. S. Hamady, (2004) ‘‘New concepts for normally-off power Gallium Nitride (GaN) High Electron mobility transistor (HEMT)’’. Micro and nano technologies/Microelectronics. University Toulouse III Paul Sabatier

  2. A. Kyrtsos, M. Matsubara, E. Bellotti, On the feasibility of p-type Ga2O3. Appl. Phys. Lett. 112(3), 032108 (2018 Jan 15)

  3. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter. 19(34), 346211 (2007 Jul 20)

  4. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, D. Jena, Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 109(21), 212101 (2016 Nov 21)

  5. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122(3), 035702 (2017 Jul 21)

  6. R. Gaska, J.W. Yang, A. Osinsky, Q. Chen, M.A. Khan, A.O. Orlov, G.L. Snider, M.S. Shur, Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates. Appl. Phys. Lett. 72(6), 707–709 (1998 Feb 9)

  7. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal semiconductor field effect transistors on single-crystal β- Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012 Jan 2)

  8. L. Ardaravi cius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R. Shealy

  9. T.E. Kazior, U.K. Mishra, L. Shen, Y.F. Wu, (2008) GaN-Based RF Power Devices and Amplifiers, Proc. IEEE, vol. 96, no. 2, pp. 287–305

  10. N.K. Subramani, ‘ Physics-based TCAD Device Simulations and Measurements of GaN HEMT Technology for RF Power Amplifier Applications Electronics (Université de Limoges, 2017)

  11. R. Ranjan, N. Kashyap, A. Raman, Demonstration of Temperature-Dependent Analysis of GAA–β-(AlGa)2O3/Ga2O3High Electron Mobility Transistor (IETE Journal of Research, 2022), pp. 1–9

  12. M. Orita, H. Ohta, M. Hirano, H. Hosono, Deep- ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77(25), 4166–4168 (2000 Dec 18)

  13. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rerat, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74(19), 195123 (2006 Nov 27)

  14. E. Aubay, D. Gourier, Magnetic bistability and Overhauser shift of conduction electrons in gallium oxide. Phys. Rev. B 47(22), 15023 (1993 Jun 1)

  15. M. Passlack, N.E. Hunt, E.F. Schubert, G.J. Zydzik, M. Hong, J.P. Mannaerts, R.L. Opila, R.J. Fischer, Dielectric properties of electron-beam deposited Ga2O3 films. Appl. Phys. Lett. 64(20), 2715–2717 (1994 May 16)

  16. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Synthesis and control of conductivity of ultraviolet transmitting β- Ga2O3 single crystals. Appl. Phys. Lett. 70(26), 3561–3563 (1997 Jun 30)

  17. P. Kumar, M. Gupta, K. Singh, N. Kumar, Analysis of transition metal dichalcogenides materials based gas sensor using non-equilibrium green’s function. Int. J. Numer. Model. Electron. Networks Devices Fields. 36(1), e3036 (2023)

    Article  Google Scholar 

  18. E.G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl. Phys. Lett. 92(20), 202120 (2008 May 19)

  19. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 97(14), 142106 (2010 Oct 4)

  20. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T.T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, P-type β-gallium oxide

  21. M. Kuzuhara, H. Hasegawa, Y. Ishikawa, A new field - effect transistor with selectively doped GaAs/n‐AlGaAs heterojunctions. J. Appl. Phys. 49(5), 3033–3035 (1980)

    Google Scholar 

  22. T. Mimura, H. Iwai, An enhancement-mode GaAs MESFET with AlGaAs/GaAs heterojunctions. IEEE Electron Device Lett. 1(2), 35–37 (1980)

    Google Scholar 

  23. R. Ranjan, N. Kashyap, A. Raman, 2022. Design and investigation of field plate-based vertical GAA–β-(AlGa)2O3/Ga2O3 high electron mobility transistor. Micro and Nanostructures, 164, p.107117

  24. P. Kumar, M. Gupta, K. Singh, Performance Evaluation of Transition Metal Dichalcogenides Based Steep Subthreshold Slope Tunnel Field Effect Transistor, vol. 12 (Silicon, 2020), pp. 1857–1864

  25. J. Zhang et al., Recent advances in gallium oxide power devices. Mater. Today Phys., 2019

  26. H.A.L. Fisher et al., Gallium Oxide (Ga2O3) Power Devices: A Review (Applied Sciences, 2018)

  27. C. Lee et al., Extended-gate Ga2O3 nanowire field- effect transistors. Nano Lett. 12(1), 397–401 (2012)

    Google Scholar 

  28. Design and Analysis of Dopingless Charge-Plasma-Based, Ring Architecture of Tunnel Field-Effect Transistor for Low-Power Application

  29. M. Higashiwaki et al., Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 34(4), 043001 (2019)

    Google Scholar 

  30. S. Uda et al., Device Characteristics of Ga2O3Vertical pn Diodes on β-Ga2O3Sustrate (Applied Physics Ex, 2019)

  31. J.S. peck et al., Ga2O3Power Devices: Enabling next- generation high-frequency Lectronics (MRS Bulletin, 2020)

  32. A. ikavyy, A. Uren, C. Roberts, The impact of gate length scaling in the DC and RF Performance of AlGaAs/InGaAs Pseudomorphic HEMTs. IEEE Trans. Electron. Devices. 57(4), 771–777 (April 2010)

  33. Y. He, Y. Li, K.Y. Lim, Effect of gate length on the DC and RF performances of InAlN/AlN/GaN HEMTs. IEEE Trans. Electron. Devices. 65(3), 904–908 (March 2018)

  34. P. Cova et al., Gate length scaling of AlGaN/GaN HEMTs for Microwave Power Applications. IEEE Trans. Electron. Devices. 64(10), 4231–4236 (October 2017)

  35. R. Ranjan, N. Kashyap, A. Raman, Design and Analytical Assessment of Non-ideal Ion-sensitive β-MIS-(AlGa) 2 O 3/Ga 2 O 3 high Electron mobility transistor. IEEE Trans. Nanotechnol. 22, 84–90 (2023)

    Article  CAS  Google Scholar 

  36. S.Y. Wang et al., Gate length scaling of GaN-Based high-Electron-mobility transistors. IEEE Electron Device Lett. 30(2), 176–178 (February 2009)

  37. J. Bao et al., A review of GaN HEMTs: Reactor to product. IEEE J. Electron. Devices Soc. 6, 446–455 (2018)

    Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Suryansh Raheja: Simulation, TCAD Software, Writing- Original draft preparation. Ashish Raman: TCAD Software, Writing- Original draft preparation. Ravi Ranjan: Simulation, Data curation and Revision, Logical-Methodology, conceptualization

Corresponding author

Correspondence to Ravi Ranjan.

Ethics declarations

Ethics Approval and Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest

No conflicts to report.

Research Involving Human Participants and/or Animals

Not Applicable.

Informed Consent

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, A., Raheja, S. & Ranjan, R. Design and Performance Analysis of Normally -Off Extended Gate (AlGa)2O3/Ga2O3 High Electron Mobility Transistor. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00537-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00537-0

Keywords

Navigation