Skip to main content
Log in

Approaches to Improve Mobility and Stability of IGZO TFTs: A Brief Review

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Among metal oxide material TFTs, IGZO TFTs are highly regarded for their exceptionally high mobility, exceeding 10 cm²/V·s, remarkable transparency of more than 80%, and their adaptable low-temperature fabrication techniques. High-performance displays operating at refresh rates of up to 144 Hz and undergoing millions of device switches demand IGZO TFTs with mobility exceeding 20 cm²/V·s and higher stability against impulse stress. The effect of IGZO material composition on device stability and recent strategies to promote the mobility and stability of IGZO TFT by modifying the transistor structure, preparation process, and post-processing techniques to reduce VO have been discussed. The paper describes the application of IGZO TFTs in flexible electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Nathan, K. Sakariya, A. Kumar, P. Servati, K.S. Karim, D. Striakhilev, A. Sazonov, in Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003. (IEEE, 2003), pp. 215

  2. R. Chen, W. Zhou, M. Zhang, M. Wong, H.S. Kwok, IEEE Electron Device Lett. 34, 60 (2012). [doi]

    Article  Google Scholar 

  3. J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011). [doi]

    Article  CAS  Google Scholar 

  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, nature 432, 488 (2004). [doi]

  5. H.-W. Zan, C.-C. Yeh, H.-F. Meng, C.-C. Tsai, L.-H. Chen, Adv. Mater. 24, 3509 (2012). [doi]

    Article  CAS  PubMed  Google Scholar 

  6. S.Y. Lee, Trans. Electr. Electron. Mater. 21, 235 (2020). [doi: 10.1007/s42341-020-00197-w]

    Article  Google Scholar 

  7. J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films. 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018]

    Article  CAS  Google Scholar 

  8. J. Raja, K. Jang, C.P.T. Nguyen, J. Yi, N. Balaji, S.Q. Hussain, S. Chatterjee, Trans. Electr. Electron. Mater. 16, 234 (2015). [doi]

    Article  Google Scholar 

  9. K. Walsh, N.E. Gorji, Results Phys. 56, 107233 (2024). [doi]

    Article  Google Scholar 

  10. X. Yu, Y. Shang, L. Zheng, K. Wang, ACS Appl. Electron. Mater. 5, 5240 (2023). [doi]

    Article  CAS  Google Scholar 

  11. Y. Liu, L. Wang, D. Li, K. Wang, Prot. Control Mod. Power Syst. 8, 1 (2023). [doi]

    Article  Google Scholar 

  12. X. Yu, N. Ma, L. Zheng, L. Wang, K. Wang, Technologies 11, 42 (2023). [doi]

  13. J. Gao, D. Yang, S. Wang, Z. Li, L. Wang, K. Wang, J. Energy Storage. 73, 109248 (2023). [doi]

    Article  Google Scholar 

  14. W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, J.-H. Lin, C.-H. Fang, C.-C. Lee, IEEE Electron Device Lett. 32, 1552 (2011). [doi]

    Article  CAS  Google Scholar 

  15. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. (2010). [doi]

  16. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012). [doi]

    Article  CAS  PubMed  Google Scholar 

  17. Y.S. Rim, H. Chen, B. Zhu, S.H. Bae, S. Zhu, P.J. Li, I.C. Wang, Y. Yang, Adv. Mater. Interfaces. 4, 1700020 (2017). [doi]

    Article  Google Scholar 

  18. K. Myny, Nat. Electron. 1, 30 (2018). [doi]

    Article  CAS  Google Scholar 

  19. H. Meng, S. Huang, Y. Jiang, Inform. Technol. 1, 2 (2020). [doi]

    Google Scholar 

  20. T. Kamiya, H. Hosono, NPG Asia Mater. 2, 15 (2010). [doi]

    Article  Google Scholar 

  21. Y.-H. Lin, J.-C. Chou, J. Nanomaterials. 16, 442 (2015). [doi]

    Google Scholar 

  22. L. Lin-Feng, Z. Peng, P. Jun-Biao, Acta Phys. Sinica 65 (2016). [doi]

  23. D. Wang, Z. Jiang, L. Li, D. Zhu, C. Wang, S. Han, M. Fang, X. Liu, W. Liu, P. Cao, Nanomaterials. 13, 1422 (2023). [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Zhang, L. Weng, B. Liu, D. Kuang, X. Liu, B. Jiang, G. Zhang, Z. Bao, G. Yuan, J. Guo, Vacuum. 215, 112225 (2023). [doi]

    Article  CAS  Google Scholar 

  25. Y.-S. Kim, W.-B. Lee, H.-J. Oh, T. Hong, J.-S. Park, Adv. Mater. Interfaces. 9, 2200501 (2022). [doi]

    Article  CAS  Google Scholar 

  26. X. Ji, Y. Yuan, X. Yin, S. Yan, Q. Xin, A. Song, IEEE Trans. Electron. Devices. 69, 6783 (2022). [doi]

    Article  CAS  Google Scholar 

  27. W. Xu, G. Zhang, X. Feng, J. Alloys Compd. 862, 158030 (2021). [doi]

    Article  CAS  Google Scholar 

  28. M.M. Billah, A.B. Siddik, J.B. Kim, D.K. Yim, S.Y. Choi, J. Liu, D. Severin, M. Hanika, M. Bender, J. Jang, Adv. Electron. Mater. 7, 2000896 (2021). [doi]

    Article  CAS  Google Scholar 

  29. S.-L. Li, M.-X. Lee, C.-C. Yen, T.-L. Chen, C.-H. Chou, C. Liu, in 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) IEEE, (2021), pp. 1

  30. J.-L. Weng. [doi]

  31. W. Huo, Z. Mei, Y. Lu, Z. Han, R. Zhu, T. Wang, Y. Sui, H. Liang, X. Du, Chin. Phys. B 28, 087302 (2019). [doi]

    Article  CAS  Google Scholar 

  32. S.I. Kim, C.J. Kim, J.C. Park, I. Song, S.W. Kim, H. Yin, E. Lee, J.C. Lee, Y. Park, in 2008 IEEE International Electron Devices Meeting (IEEE, 2008), pp. 1

  33. C. Peng, M. Xu, L. Chen, X. Li, J. Zhang, Jpn. J. Appl. Phys. 61, 070914 (2022). [doi]

    Article  CAS  Google Scholar 

  34. M.M. Billah, M.D.H. Chowdhury, M. Mativenga, J.G. Um, R.K. Mruthyunjaya, G.N. Heiler, T.J. Tredwell, J. Jang, IEEE Electron Device Lett. 37, 735 (2016). [doi]

    Article  CAS  Google Scholar 

  35. J.-H. Yang, J.H. Choi, S.H. Cho, J.-E. Pi, H.-O. Kim, C.-S. Hwang, K. Park, S. Yoo, IEEE Electron Device Lett. 39, 508 (2018). [doi]

    Article  CAS  Google Scholar 

  36. A. Flewitt, M. Powell, J. Appl. Phys. 115 (2014). [doi]

  37. M. Chun, M.D.H. Chowdhury, J. Jang, AIP Adv. 5 (2015). [doi]

  38. S. Priyadarshi, M.M. Billah, T. Lim, S.S. Urmi, J. Jang, IEEE Electron Device Lett. 44, 428 (2023). [doi]

    Article  CAS  Google Scholar 

  39. J. Kim, J. Park, G. Yoon, A. Khushabu, J.-S. Kim, S. Pae, E.-C. Cho, J. Yi, Materials Science in Semiconductor Processing 120, 105264%U https://linkinghub.elsevier.com/retrieve/pii/S1369800120311999 (2020). [doi]

  40. W.-S. Liu, C.-L. Huang, Y.-H. Lin, C.-H. Hsu, Y.-M. Chu, Semicond. Sci. Technol. 35, 025004 (2019). [doi]

    Article  Google Scholar 

  41. M.H. Cho, H. Seol, A. Song, S. Choi, Y. Song, P.S. Yun, K.-B. Chung, J.U. Bae, K.-S. Park, J.K. Jeong, IEEE Trans. Electron. Devices. 66, 1783 (2019). [doi]

    Article  CAS  Google Scholar 

  42. P.O. Oviroh, R. Akbarzadeh, D. Pan, R.A.M. Coetzee, T.-C. Jen, Sci. Technol. Adv. Mater. 20, 465 (2019). [doi]

    Article  PubMed  PubMed Central  Google Scholar 

  43. J.-Y. Huh, J.-H. Jeon, H.-H. Choe, K.-W. Lee, J.-H. Seo, M.-K. Ryu, S.-H.K. Park, C.-S. Hwang, W.-S. Cheong, Thin Solid Films. 519, 6868 (2011). [doi]

    Article  CAS  Google Scholar 

  44. D.G. Yang, H. Do Kim, J.H. Kim, S.W. Lee, J. Park, Y.J. Kim, H.-S. Kim, Thin Solid Films. 638, 361 (2017). [doi]

    Article  CAS  Google Scholar 

  45. T. Pi, D. Xiao, H. Yang, G. He, X. Wu, W. Liu, D.W. Zhang, S.-J. Ding, IEEE Trans. Electron. Devices. 69, 156 (2021). [doi]

    Article  Google Scholar 

  46. C. Peng, S. Yang, C. Pan, X. Li, J. Zhang, IEEE Trans. Electron. Devices. 67, 4262 (2020). [doi]

    Article  CAS  Google Scholar 

  47. Y. Nam, H.-O. Kim, S.H. Cho, S.-H.K. Park, RSC Adv. 8, 5622 (2018). [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T. Song, D. Zhang, M. Wang, IEEE Electron Device Lett. 42, 1623 (2021). [doi]

    Article  CAS  Google Scholar 

  49. Y. Wei, Y. Yu, N. Lv, D. Zhang, M. Wang, R. Wang, L. Lu, M. Wong, IEEE Trans. Electron. Devices. 68, 1649 (2021). [doi]

    Article  CAS  Google Scholar 

  50. K.-M. Jung, J. Oh, H.E. Kim, A. Schuck, K. Kim, K. Park, J.-H. Jeon, S.-Y. Lee, Y.-S. Kim, J. Phys. D 53, 355107 (2020). [doi]

    Article  CAS  Google Scholar 

  51. Y. Li, J. Sun, T. Salim, R. Liu, T. Chen, ECS J. Solid State Sci. Technol. 10, 045006 (2021). [doi]

    Article  CAS  Google Scholar 

  52. K.Y. Shin, Y.J. Tak, W.-G. Kim, S. Hong, H.J. Kim, ACS Appl. Mater. Interfaces. 9, 13278 (2017). [doi]

    Article  CAS  PubMed  Google Scholar 

  53. J. Chen, C.T. Liu, Ieee Access. 1, 150 (2013). [doi]

    Article  Google Scholar 

  54. H.-J. Shin, S.-H. Choi, D.-M. Kim, S.-E. Han, S.-J. Bae, S.-K. Park, H.-S. Kim, C.-H. Oh, in SID Symposium Digest of Technical Papers Wiley Online Library, (2021), pp. 611

  55. Y. Takeda, S. Kobayashi, S. Murashige, K. Ito, I. Ishida, S. Nakajima, H. Matsukizono, N. Makita, in SID Symposium Digest of technical papers Wiley Online Library, (2019), pp. 516

  56. M. Ito, M. Kon, M. Ishizaki, N. Sekine, Proc. IDW/AD 5, 845 (2005). [doi]

  57. S. Nakano, N. Saito, K. Miura, T. Sakano, T. Ueda, K. Sugi, H. Yamaguchi, I. Amemiya, M. Hiramatsu, A. Ishida, J. Soc. Inform. Display. 20, 493 (2012). [doi]

    Article  CAS  Google Scholar 

  58. J.-S. Kim, J.-W. Byun, J.-H. Jang, Y.-D. Kim, K.-L. Han, J.-S. Park, B.-D. Choi, IEEE Trans. Electron. Devices. 65, 3269 (2018). [doi]

    Article  CAS  Google Scholar 

  59. B. Han, H. Li, G. Li, P. Zhang, X. Yang, S. Qin, R. Huang, Z. Chen, H. Zhang, Y. Hsu, (Wiley Online Library, 2023), pp. 77

  60. M.T. Vijjapu, S. Surya, M. Zalte, S. Yuvaraja, M.S. Baghini, K.N. Salama, Sensors and Actuators B: Chemical 331, 129450%@ 0925 (2021). [doi]

  61. W. Jiang, C. Peng, Y. Yuan, S. Yang, X. Li, J. Mater. Sci.: Mater. Electron. 31, 1547 (2020). [doi]

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A4A1028702). This work was also supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (RS-2023-00266568) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duy Phong Pham or Junsin Yi.

Ethics declarations

Conflict of interest

There is no existing conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Hu, Y., Chen, J. et al. Approaches to Improve Mobility and Stability of IGZO TFTs: A Brief Review. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00536-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00536-1

Keywords

Navigation