Skip to main content
Log in

On the Structural, Magnetic, Electronic, Optical, and Thermoelectric Characteristics of the Solar Perovskite CsCdI3: DFT and SCAPS-1D Studies

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we employed theoretical calculations within the Density Functional Theory (DFT) framework using the GGA + SOC + U approach to explore the various properties of the Perovskite CsCdI3. Specifically, we investigated its structural, magnetic, electronic, optical, and thermoelectric characteristics. Using optimized lattice parameters, our findings indicate that CsCdI3 displays semiconductor behavior, characterized by an indirect band gap of 1.774 eV. To investigate the optical behavior of CsCdI3, we calculated optical features and analyzed their correlation with electronic properties, aiming to assess its potential suitability for photovoltaic applications. Furthermore, an analysis of the material's thermoelectric properties revealed a robust power factor. Notably, at a temperature of 1800 K, the power factor reached 41 × 1013 W/m.K.s. These results suggest that CsCdI3 holds promise for thermoelectric applications, substantiating its strong thermoelectric attributes. Additionally, we conducted simulations using Scaps-1D to explore the impact of various parameters on CsCdI3-based solar cells. We anticipate that our study will stimulate further research employing experimental investigations and also offer valuable insights for the future design of CsCdI3-based solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated.

References

  1. A.O. Maka, J.M. Alabid, Solar energy technology and its roles in sustainable development. Clean Energy 6(3), 476–483 (2022)

    Article  Google Scholar 

  2. C.M. Díaz-Acosta, A. Martínez-Luévanos, S. Estrada-Flores, L.F. Cano-Salazar, E.N. Aguilera-González, M.C. Ibarra-Alonso, ABX 3 inorganic halide perovskites for solar cells: chemical and crystal structure stability. Matéria (Rio de Janeiro) 26, 13116 (2022). https://doi.org/10.1590/S1517-707620210004.1316

    Article  Google Scholar 

  3. K. Miyata, T.L. Atallah, X.-Y. Zhu et al., Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3(10), e1701469 (2017). https://doi.org/10.1126/sciadv.1701469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Zeb et al., [C5H12N]CdCl3: an ABX3 perovskite-type semiconducting switchable dielectric phase transition material. Inorg. Chem. Front. 4(9), 1485–1492 (2017). https://doi.org/10.1039/C7QI00301C

    Article  CAS  Google Scholar 

  5. E. Fransson, P. Rosander, F. Eriksson, J.M. Rahm, T. Tadano, P. Erhart et al., Limits of the phonon quasi-particle picture at the cubic-to-tetragonal phase transition in halide perovskites. Commun. Phys. (2023). https://doi.org/10.1038/s42005-023-01297-8

    Article  Google Scholar 

  6. Y. Doumbia, A. Bouich, B.M. Soucase, D. Soro et al., Towards stable free lead mixed halide perovskite thin films on FTO-coated glass substrate. JOM (2023). https://doi.org/10.1007/s11837-023-05939-8

    Article  Google Scholar 

  7. B.A. Rosales, L. Wei, J. Vela et al., Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. J. Solid State Chem. 271, 206–215 (2019). https://doi.org/10.1016/j.jssc.2018.12.054

    Article  CAS  Google Scholar 

  8. Q. Wu et al., Synthesis, crystal structures and nonlinear optical properties of β-RbCdI3·H2O and CsCdI3·H2O. Dalton Trans. (2019). https://doi.org/10.1039/C9DT01408J

    Article  PubMed  PubMed Central  Google Scholar 

  9. K. Hirose, K. Kawamura, Y. Ohishi, S. Tateno, N. Sata, Stability and equation of state of MgGeO3 post-perovskite phase. Am. Mineral. 90(1), 262–265 (2005). https://doi.org/10.2138/am.2005.1702

    Article  CAS  Google Scholar 

  10. S. Tateno, K. Hirose, N. Sata, Y. Ohishi, High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys. Chem. Minerals 32(10), 721–725 (2006). https://doi.org/10.1007/s00269-005-0049-7

    Article  CAS  Google Scholar 

  11. K. Hirose, Y. Fujita, Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys. Res. Lett. (2005). https://doi.org/10.1029/2005GL023219

    Article  Google Scholar 

  12. B. Wang, K. Ohgushi, Post-perovskite transition in anti-structure. Sci. Rep. (2016). https://doi.org/10.1038/srep37896

    Article  PubMed  PubMed Central  Google Scholar 

  13. N.I. Selivanov et al., Hybrid organic-inorganic halide post-perovskite 3-cyanopyridinium lead Tribromide for optoelectronic applications. Adv. Func. Mater. 31(37), 2102338 (2021). https://doi.org/10.1002/adfm.202102338

    Article  CAS  Google Scholar 

  14. G.B. Jin et al., Structural, electronic, and magnetic properties of UFeS3 and UFeSe3. Inorg. Chem. 49(22), 10455–10467 (2010). https://doi.org/10.1021/ic101474e

    Article  CAS  PubMed  Google Scholar 

  15. G.B. Jin, E.S. Choi, R.P. Guertin, J.S. Brooks, C.H. Booth, T.E. Albrecht-Schmitt, Syntheses, structures, magnetism, and optical properties of lutetium-based interlanthanide selenides. Inorg. Chem. 46(22), 9213–9220 (2007). https://doi.org/10.1021/ic701012j

    Article  CAS  PubMed  Google Scholar 

  16. A. Jabar, S. Benyoussef, L. Bahmad, A first principal study of the electronic, optic and thermoelectric properties of double perovskite K2CuRhX6 (X = Cl or I). Opt. Quant. Electron 55(9), 839 (2023). https://doi.org/10.1007/s11082-023-05130-y

    Article  CAS  Google Scholar 

  17. A. Jabar, H. Labrim, L. Laanab, B. Jaber, L. Bahmad, S. Benyoussef, Study of physical properties of the new inorganic perovskites LiSnX3 (X=Br or I): A DFT approach. Mod. Phys. Lett. B (2023). https://doi.org/10.1142/S0217984923501324

    Article  Google Scholar 

  18. H. Labrim et al., Optoelectronic and thermoelectric properties of the perovskites: NaSnX3 (X = Br or I)—A DFT study. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02788-5

    Article  Google Scholar 

  19. D. Saikia, J. Bera, A. Betal, S. Sahu, Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt. Mater 123, 111839 (2021). https://doi.org/10.1016/j.optmat.2021.111839

    Article  CAS  Google Scholar 

  20. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, Wien2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152(7), 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  CAS  PubMed  Google Scholar 

  21. G.K.H. Madsen, D.J. Singh, BoltzTraP A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  22. T. Katsura, Y. Tange, A simple derivation of the birch-murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals (2019). https://doi.org/10.3390/min9120745

    Article  Google Scholar 

  23. M.K. Hossain et al., Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy & Fuels 37, 6078–6098 (2023). https://doi.org/10.1021/acs.energyfuels.3c00035

    Article  CAS  Google Scholar 

  24. Y. Zhang et al., SCAPS simulation and DFT study of lead-free perovskite solar cells based on CsGeI3. Mater. Chem. Phys. 306, 128084 (2023). https://doi.org/10.1016/j.matchemphys.2023.128084

    Article  CAS  Google Scholar 

  25. Y. Wang et al., First-principles thermodynamic theory of Seebeck coefficients. Phys. Rev. B 98(22), 224101 (2018). https://doi.org/10.1103/PhysRevB.98.224101

    Article  CAS  Google Scholar 

  26. F. Voelklein, H. Reith, T. Cornelius, M. Rauber, R. Neumann, The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Nanotechnology 20, 325706 (2009). https://doi.org/10.1088/0957-4484/20/32/325706

    Article  CAS  Google Scholar 

  27. A. Raman, C. Chaturvedi, N. Kumar, Multi-Quantum Well-Based Solar Cell, in Electrical and Electronic Devices, Circuits, and Materials, John Wiley & Sons, Ltd, 2021: 351‑372. https://doi.org/10.1002/9781119755104.ch19.

  28. M.K. Hossain et al., Numerical simulation and optimization of CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New J. Chem. 47, 4801–4817 (2023). https://doi.org/10.1039/D2NJ06206B

    Article  CAS  Google Scholar 

  29. T. AlZoubi, B. Mourched, M. Al Gharram, G. Makhadmeh, O. Abu Noqta, Improving photovoltaic performance of hybrid organic-inorganic MAGeI3 perovskite solar cells via numerical optimization of carrier transport materials (HTLs/ETLs). Nanomaterials (Basel) 13(15), 2221 (2023). https://doi.org/10.3390/nano13152221

    Article  CAS  PubMed  Google Scholar 

  30. X. Zhang et al., High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 6(2), 444–457 (2022). https://doi.org/10.1016/j.joule.2022.01.006

    Article  CAS  Google Scholar 

  31. M.T. Islam, A. Kumar, A.K. Thakur, Defect density control using an intrinsic layer to enhance conversion efficiency in an optimized SnS solar cell. J. Electron. Mater. 50, 3603–3613 (2021). https://doi.org/10.1007/s11664-021-08881-0

    Article  CAS  Google Scholar 

  32. P. Singh, A. Raman, N. Kumar, Spectroscopic and simulation analysis of facile PEDOT: PSS layer deposition-silicon for perovskite solar cell. Silicon 12(8), 1769–1777 (2020). https://doi.org/10.1007/s12633-019-00284-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the SCAPS software originators, an efficient one-dimensional solar cell simulation program developed by researchers at the University of Ghent in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Benyoussef, S. & Bahmad, L. On the Structural, Magnetic, Electronic, Optical, and Thermoelectric Characteristics of the Solar Perovskite CsCdI3: DFT and SCAPS-1D Studies. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00532-5

Keywords

Navigation