Skip to main content
Log in

Applicability of Channel Doping Gradient in the Design of a Short Channel (0.1 µm) LDMOS Transistor for Integrated Power and RF Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we have proposed a channel engineering technique for the performance enhancement of a short channel Laterally Diffused Metal–Oxide–Semiconductor (LDMOS) transistor for integrated low voltage power and RF applications. The technique involves a modification in the fabrication process flow of a conventional (CON) LDMOS to generate a device with a high graded doped channel. This device is labeled as Channel engineered (CE) LDMOS. Both devices are virtually fabricated in a process simulator with optimized implantation parameters. The impact of laterally grading the channel doping for a power device with a channel length of 0.1 µm is investigated through DC and AC device simulations. Important DC and AC performance parameters are extracted and compared with the CON device. It is seen that the CE device shows considerable improvement in transconductance (25.5%), saturated drain current (10%), output resistance (95.5%), intrinsic gain (143%), drain induced barrier lowering (53%), specific on-resistance (14%) and current on/off ratio without degrading the breakdown voltage. Small improvement is also observed in the transition frequency of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T. Erlbacher, Lateral Power Transistors in Integrated Circuits (Springer, Cham, 2014)

    Book  Google Scholar 

  2. F. van Rijs, in IEEE Radio and Wireless Symposium, vol. 69 (2008). https://doi.org/10.1109/RWS.2008.4463430

  3. S.J.C.H. Theeuwen, J.H. Qureshi, IEEE Trans. Microw. Theory Tech. 60, 1755 (2012). https://doi.org/10.1109/TMTT.2012.2193141

    Article  Google Scholar 

  4. S.J.C.H. Theeuwen, H. Mollee, R. Heeres, F. Van Rijs, in 13th European Microwave Integrated Circuits Conference (EuMIC), vol. 162, (2018) https://doi.org/10.23919/EuMIC.2018.8539904

  5. M. Ahmed, X. Hue, M. Szymanowski, R. Uscola, J. Staudinger, J. Kitchen, IEEE Microw. Wirel. Compon. Lett. 31, 881 (2021). https://doi.org/10.1109/LMWC.2021.3078699

    Article  Google Scholar 

  6. M. Vigneau, M. Ercoli, S. Maroldt, Int. J. Microw. Wirel. Technol. 13, 543 (2021). https://doi.org/10.1017/S1759078721000131

    Article  Google Scholar 

  7. T.V. Dinh et al., in: IEEE International Electron Devices Meeting (IEDM), 25.2.1 (2019). https://doi.org/10.1109/IEDM19573.2019.8993471

  8. Xu. Zhaozhao, D. Liu, Hu. Jun, F. Jin, X. Yang, W. Duan, W. Yue, Z. Fang, W. Qian, W. Kong, S. Zou, Microelectron. J. 88, 29 (2019). https://doi.org/10.1016/j.mejo.2019.04.011

    Article  CAS  Google Scholar 

  9. M. Zareiee, SILICON 11, 3011 (2019). https://doi.org/10.1007/s12633-019-0092-5

    Article  CAS  Google Scholar 

  10. I. Cortes et al., Semicond. Sci. Technol. 23, 095024 (2008)

    Article  Google Scholar 

  11. A.W. Ludikhuize, in: 12th International Symposium on Power Semiconductor Devices & ICs Proceedings, vol. 11, (2000). https://doi.org/10.1109/ISPSD.2000.856763

  12. M. Qiao, Y. Li, Z. Yuan, L. Liang, Z. Li, B. Zhang, IEEE Trans. Electron. Devices 16, 5605 (2020). https://doi.org/10.1109/TED.2020.3030872

    Article  Google Scholar 

  13. M. Abouelatta-Ebrahim, A. Shaker, G.T. Sayah, C. Gontrand, A. Zekry, Ain Shams Eng. J. 6, 501 (2015). https://doi.org/10.1016/j.asej.2014.12.003

    Article  Google Scholar 

  14. J. Wei, X. Luo, X. Shi, R. Tian, B. Zhang, Z. Li, in: IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), vol. 127, (2014). https://doi.org/10.1109/ISPSD.2014.6855992

  15. K. Hara, T. Kakegawa, S. Wada, T. Utsumi, T. Oda, in: 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), vol. 307, (2017). https://doi.org/10.23919/ISPSD.2017.7988965

  16. S.Y. Chen et al., IEEE Trans. Electron Devices 69, 878 (2022). https://doi.org/10.1109/TED.2021.3131922

    Article  CAS  Google Scholar 

  17. K.-Y. Na, K.-J. Baek, G.-W. Lee, Y.-S. Kim, IEEE Trans. Electron Devices 60, 3515 (2013). https://doi.org/10.1109/TED.2013.2278974

    Article  CAS  Google Scholar 

  18. M. Payal, Y. Singh, IETE Tech. Rev. 34, 246 (2016). https://doi.org/10.1080/02564602.2016.1166993

    Article  Google Scholar 

  19. S. Chahar, G.M. Rather, H. Najeeb-ud-din, IEEE Trans. Electron Devices 56, 585 (2019). https://doi.org/10.1109/TED.2018.2881918

    Article  Google Scholar 

  20. F. Jie, W. Zhi-Gang, Z. Bo, L. Xiao-Rong, Chin. Phys. B 22, 048501 (2013)

    Article  Google Scholar 

  21. K.-J. Baek, K.-Y. Na, Y.-S. Kim, Solid-State Electron. 100, 49 (2014). https://doi.org/10.1016/j.sse.2014.07.004

    Article  CAS  Google Scholar 

  22. X. Luo, Q. Tan, J. Wei, K. Zhou, G. Deng, Z. Li, Bo. Zhang, IEEE Trans. Electron Devices 63, 2614 (2016). https://doi.org/10.1109/TED.2016.2555327

    Article  CAS  Google Scholar 

  23. A. Saadat, M.L. Van De Put, H. Edwards, W.G. Vandenberghe, IEEE J. Electron Devices Soc. 8, 711 (2020). https://doi.org/10.1109/JEDS.2020.3008388

    Article  CAS  Google Scholar 

  24. A. Saadat, M.L. Van de Put, H. Edwards, W.G. Vandenberghe, IEEE Trans. Electron Devices 67, 4990 (2020). https://doi.org/10.1109/TED.2020.3019479

    Article  CAS  Google Scholar 

  25. B. Yu, C.H. Wann, E.D. Nowak, K. Noda, C. Hu, IEEE Trans. Electron Devices 44, 627 (1997). https://doi.org/10.1109/16.563368

    Article  CAS  Google Scholar 

  26. D.G. Borse et al., IEEE Trans. Electron Devices 49, 1077 (2002). https://doi.org/10.1109/TED.2002.1003752

    Article  CAS  Google Scholar 

  27. K. Narasimhulu, M.P. Desai, S.G. Narendra, V.R. Rao, IEEE Trans. Electron Devices 51, 1416 (2004). https://doi.org/10.1109/TED.2004.833589

    Article  Google Scholar 

  28. N.R. Mohapatra et al., in: Proceedings of 35th European Solid-State Device Research Conference, vol. 481, (2005). https://doi.org/10.1109/ESSDER.2005.1546689

  29. K.N. Kaushal, N.R. Mohapatra, IEEE J. Electron Devices Soc. 9, 334 (2021). https://doi.org/10.1109/JEDS.2021.3059854

    Article  CAS  Google Scholar 

  30. John Lin, United States Patent 6,900,101 B2, (2005)

  31. Sentaurus User Guide, (Synopsys Inc., Mountain View, CA, USA 2019)

  32. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998), pp.127–128

    Google Scholar 

  33. B.S. Kumar, M. Shrivastava, IEEE Trans. Electron Devices 65, 191 (2018). https://doi.org/10.1109/TED.2017.2777004

    Article  CAS  Google Scholar 

  34. A.C.T Aarts, A. Tajic, MOS Model 20, Level 2002 (Philips Semiconductors PR-TN-2003/00301, 2004), https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=464292b7db9d1f5283ed73e58579c0e3520540b2

  35. Integrated Power Devices and TCAD Simulation (CRC Press, 2014), pp. 224–225

  36. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices (Springer, US, 2008)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ministry of Electronics and Information Technology for providing scholarship support during the research period.

Funding

No funding was received for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Fayaz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayaz, S., Hakim, Nud. & Rather, G.M. Applicability of Channel Doping Gradient in the Design of a Short Channel (0.1 µm) LDMOS Transistor for Integrated Power and RF Applications. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00530-7

Keywords

Navigation