Skip to main content
Log in

Exploration of Linearity Analysis in Nanotube GAA MOSFET Through Simulation-Based Study Utilizing Multi-Material Gate Technique

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this research paper, we present a comprehensive simulation study focused on a specific type of MOSFET called the triple material gate all around (GAA) MOSFET. The study incorporates an inner gate engineering approach, utilizing a high-K dielectric insulator to facilitate the downsizing of the device. Our investigation primarily compares the performance of the triple material gate GAA MOSFET with a similar MOSFET design incorporating triple material inner gate engineering. We evaluate a range of parameters, including drain current (ID), threshold voltage (Vth), transconductance (gm), higher-order transconductance (gm2, gm3, gm4), transconductance generation factor (TGF), second-order voltage coefficient (VIP2), and third-order voltage coefficient (VIP3). The findings of our study highlight the linearity analysis of the proposed device, particularly in the context of lower technology nodes. Based on our results, we posit that the triple material gate GAA MOSFET with inner gate engineering holds substantial promise as a potential candidate for future semiconductor applications. technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.P. Auth, J.D. Plummer, Scaling theory for cylindrical, fully depleted, surrounding gate MOSFETs. IEEE Electron. Device Lett. 18, 74 (1997)

    Article  Google Scholar 

  2. T.K. Chiang, A scaling theory for fully depleted, surrounding-gate MOSFET’s: including effective conducting path effect. Microelectron. Eng. 77, 2175 (2005)

    Article  Google Scholar 

  3. N.A. Kumari, V.B. Sreenivasulu, P. Prithvi, Impact of scaling on Nanosheet FET and CMOS Circuit Applications. ECS J. Solid State Sci. Technol. 12, 033001 (2023)

    Article  Google Scholar 

  4. A. Kranti, S. Haldar, R.S. Gupta, Analytical model for threshold voltage and I-V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET. Microelectron. Eng. 56, 241 (2001)

    Article  CAS  Google Scholar 

  5. K. Bhol, B. Jena, U. Nanda, Silicon Nanowire GAA-MOSFET: a workhorse in nanotechnology for future semiconductor devices. Silicon. 14, 3163 (2022)

    Article  CAS  Google Scholar 

  6. F. Liu, J. He, L. Zhang, J. Zhang, J. Hu, C. Ma, M. Chan, A charge-based model for long-Channel Cylindrical Surrounding-gate MOSFETs from Intrinsic Channel to heavily doped body. IEEE Trans. Electron. Devices. 55, 2187 (2008)

    Article  CAS  Google Scholar 

  7. K. Bhol, B. Jena, U. Nanda, Journey of Mosfet from planar to gate all around: a review. Recent Pat. Nanotechnol. 16, 326 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. S. Samia, D. Bouaza, High dielectric permittivity impact on SOI double gate MOSFET. Microelectron. Eng. 112, 213 (2013)

    Article  CAS  Google Scholar 

  9. R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Effect of localised charges on nanoscale cylindrical surrounding gate MOSFET: Analog performance and linearity analysis. Microelectron. Reliab. 52, 989 (2012)

    Article  CAS  Google Scholar 

  10. K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144 (2014)

    Article  CAS  Google Scholar 

  11. B. Jena, S. Dash, G.P. Mishra, Improved switching speed of a CMOS inverter using work-function modulation engineering. IEEE Trans. electron. Devices. 65, 2422 (2018)

    Article  CAS  Google Scholar 

  12. C.N. Venkatesh, G.P. Mishra, B. Jena, Design of Core Gate Silicon Nanotube RADFET with Improved Sensitivity. ECS J. Solid-State Sci. Technol. 11, 081002 (2022)

    Article  CAS  Google Scholar 

  13. B. Jena, S. Dash, G.P. Mishra, Inner-Gate-Engineered GAA MOSFET to enhance the Electrostatic Integrity NANO: brief reports and reviews, 14 (2019),1950128

  14. W. Long, H. Ou, J.M. Kuo, K.K. Chin, Dual material gate (DMG) Field Effect Transistor. IEEE Tran Electron. Devices. 46, 865 (1999)

    Article  Google Scholar 

  15. A. Pal, Analytical study of dual material surrounding Gate MOSFET to suppress short-channel effects(SCEs). Eng. Sci. Technol. 17, 205 (2014)

    Google Scholar 

  16. Sentaurus Device User Guide, Synopsys, Inc., Mountain View, USA, 2022

  17. A. Singh, C.K. Pandey, S. Chaudhury, and C.K.Sarkar, 2019. Effect of strain in silicon nanotube FET devices for low power applications. The European Physical Journal Applied Physics, vol. 85(2019), 10101

  18. V. Pott, K.E. Moselund, D. Bouvet, L. De Michielis, A.M. Ionescu, Fabrication and characterization of gate-all-around silicon nanowires on bulk silicon. IEEE Trans. Nanotechnol. 7, 733 (2008)

    Article  Google Scholar 

  19. S. Barraud,, B.P.V. Lapras, R. Coquand, C. Vizioz, J.M. Hartmann, Top-down fabrication and electrical characterization of Si and SiGe nanowires for advanced CMOS technologies. Semicond. Sci. Technol. 34, 074001 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakanta Nanda.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of Interest

There is no conflict of interest for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, B., Bhol, K. & Nanda, U. Exploration of Linearity Analysis in Nanotube GAA MOSFET Through Simulation-Based Study Utilizing Multi-Material Gate Technique. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00528-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00528-1

Keywords

Navigation