Skip to main content
Log in

Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe2O4 Nanocomposites Films for Nanoelectronics and Optics Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Cobalt-based ferrite nanocomposites have been envisioned as the most promising materials to be utilized in various optical and electronic devices, including transistors, electronic gates, and photovoltaic cells. Here, a casting method is used to fabricate polystyrene/cobalt ferrite (PS/CoFe2O4) nanocomposite films (NFs) with different CoFe2O4 nanoparticle contents (0–6.3 wt%), followed by characterizing their chemical, microstructural, optical, and dielectric properties. The absorbance of PS/CoFe2O4NFs increases to 70% and the transmittance decreases to 75% at a wavelength of λ = 580 nm when the CoFe2O4 content increases to 6.3 wt%. Moreover, the absorption coefficient increases from 378 cm−1 for pure PS to 630 cm−1 for NFs with CoFe2O4 content of 6.3 wt% at a photon energy of 4.44 eV. The energy gap of allowed and forbidden indirect transitions is reduced from 3.3 to 2.4 eV and 3.2 to 2 eV when the nanoparticle content increases from 0 to 6.3 wt%. Mean while, the extinction coefficient and refractive index show increasing trends at λ = 880 nm, increasing from 0.5 × 10–3 to 2 × 10−3and 1.8 to 2.5, respectively. It is found that the real and imaginary parts of the dielectric constant are enhanced with increasing the CoFe2O4content.The results of AC electrical properties indicate that the corresponding electrical conductivity and dielectric constant increase by about 58% and 35% with the increase in the CoFe2O4content at a frequency of 100 Hz. Therefore, the PS/CoFe2O4NFsmay pave the way for potential applications in nanoelectronics and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Yes, the data are available.

References

  1. J.H. Lee et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36(13), R167 (2003)

    Article  ADS  CAS  Google Scholar 

  3. C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev. 60(11), 1252–1265 (2008)

    Article  CAS  Google Scholar 

  4. B. Geng, J. Ma, J. You, Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets. Cryst. Growth Des. 8(5), 1443–1447 (2008)

    Article  CAS  Google Scholar 

  5. G. Nabiyouni, D. Ghanbari, Thermal, magnetic, and optical characteristics of ABS-Fe2O3 nanocomposites. J. Appl. Polym. Sci. 125(4), 3268–3274 (2012)

    Article  CAS  Google Scholar 

  6. R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, J. Norwig, Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17(5), 1406–1410 (2001)

    Article  CAS  Google Scholar 

  7. O.O. Ayeleru, S. Dlova, F. Ntuli, W.K. Kupolati, P.A. Olubambi, Development and size distribution of polystyrene/ZnO nanofillers. Procedia Manuf. 30, 194–199 (2019)

    Article  Google Scholar 

  8. N.C. Pramanik, S. Das, P.K. Biswas, The effect of Sn (IV) on transformation of co-precipitated hydrated In (III) and Sn (IV) hydroxides to indium tin oxide (ITO) powder. Mater. Lett. 56(5), 671–679 (2002)

    Article  CAS  Google Scholar 

  9. B. Hoffmann, C. Dietrich, R. Thomann, C. Friedrich, R. Mülhaupt, Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol. Rapid Commun. 21(1), 57–61 (2000)

    Article  CAS  Google Scholar 

  10. S. Navale, G. Khuspe, M. Chougule, V. Patil, Synthesis and characterization of hybrid nanocomposites of polypyrrole filled with iron oxide nanoparticles. J. Phys. Chem. Solids 75(2), 236–243 (2014)

    Article  ADS  CAS  Google Scholar 

  11. M. Xiao, L. Sun, J. Liu, Y. Li, K. Gong, Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43(8), 2245–2248 (2002)

    Article  CAS  Google Scholar 

  12. P.S. Nair, T. Radhakrishnan, N. Revaprasadu, C. Van Sittert, V. Djoković, A. Luyt, Characterization of polystyrene filled with HgS nanoparticles. Mater. Lett. 58(3–4), 361–364 (2004)

    Article  CAS  Google Scholar 

  13. M. Marinović-Cincović, Z.V. Šaponjić, V. Djoković, S.K. Milonjić, J.M. Nedeljković, The influence of hematite nano-crystals on the thermal stability of polystyrene. Polym. Degrad. Stab. 91(2), 313–316 (2006)

    Article  Google Scholar 

  14. A. Motawie, S. Ahmed, E. El-Sabbagh, N. Mansour, D. Abulyazied, E. Ali, Physicomechanical properties of nano polystyrene nanocomposites. Egypt. J. Chem. 60, 261–276 (2017)

    Article  Google Scholar 

  15. A.M. El Nahrawy, A.B.A. Hammad, A.M. Youssef, A. Mansour, A.M. Othman, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites. Appl. Phys. A 125, 1–9 (2019)

    Article  CAS  Google Scholar 

  16. M. Shaffer, K. Koziol, Polystyrene grafted multi-walled carbon nanotubes. Chem. Commun. 18, 2074–2075 (2002)

    Article  Google Scholar 

  17. J.P. Walker, S.A. Asher, Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. Anal. Chem. 77(6), 1596–1600 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. D. Sharma, P. Sharma, N. Thakur, Analysis of the optical constants of spun cast polystyrene thin film. Optoelectron. Adv. Mater. Rapid Commun. 3(2009), 145–148 (2009)

    CAS  Google Scholar 

  19. P.P. Jeeju, S. Jayalekshmi, K. Chandrasekharan, P. Sudheesh, Size dependent nonlinear optical properties of spin coated zinc oxide-polystyrene nanocomposite films. Opt. Commun. 285(24), 5433–5439 (2012)

    Article  ADS  CAS  Google Scholar 

  20. K.V. Shafi, I. Felner, Y. Mastai, A. Gedanken, Olympic ring formation from newly prepared barium hexaferrite nanoparticle suspension. J. Phys. Chem. B 103(17), 3358–3360 (1999)

    Article  CAS  Google Scholar 

  21. V. Sankaranarayanan, Q. Pankhurst, D. Dickson, C. Johnson, Ultrafine particles of barium ferrite from a citrate precursor. J. Magn. Magn. Mater. 120(1–3), 73–75 (1993)

    Article  ADS  CAS  Google Scholar 

  22. C. Corot, P. Robert, J.-M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 58(14), 1471–1504 (2006)

    Article  CAS  Google Scholar 

  23. N. Sivakumar, A. Narayanasamy, C. Chinnasamy, B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J. Phys. Condens. Matter 19(38), 386201 (2007)

    Article  ADS  Google Scholar 

  24. M. Sugimoto, The past, present, and future of ferrites. J. Am. Ceram. Soc. 82(2), 269–280 (1999)

    Article  CAS  Google Scholar 

  25. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012). https://doi.org/10.1063/1.4759436

    Article  ADS  CAS  Google Scholar 

  26. J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani, Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites. J. Ind. Eng. Chem. 20(6), 4119–4123 (2014)

    Article  CAS  Google Scholar 

  27. M. Zhong, P. Fei, X. Fu, Z. Lei, B. Su, Synthesis of PS–CoFe2O4 composite nanomaterial with improved magnetic properties by a one-step solvothermal method. Ind. Eng. Chem. Res. 52(24), 8230–8235 (2013)

    Article  CAS  Google Scholar 

  28. A. Swaminathan, R. Ravi, M. Sasikumar, M. Dasaiah, G. Hirankumar, S. Ayyasamy, Preparation and characterization of PVA/PAM/NH 4 SCN polymer film by ultrasound-assisted solution casting method for application in electric double layer capacitor. Ionics 26, 4113–4128 (2020)

    Article  CAS  Google Scholar 

  29. N. Manikandan, "XRD, FTIR and the optical studies of pure polystyrene film. Int. J. Recent Innov. Trends Comput. Commun. 2(5), 1148–1151 (2014)

    Google Scholar 

  30. B. Rai, J. Keller, R. Bajpai, Structural–morphological relative study of polyphenylene oxide and polystyrene (PS: PPO) polymer blends. in AIP Conference and Procedings, 2220(1), (2020).

  31. Y. Al-Mahweet, Physicochemical properties of prepared ZnO/polystyrene nanocomposites: structure, mechanical and optical. J. Ovonic Res. 16(1), 71–81 (2020)

    Article  Google Scholar 

  32. A. Hashim, Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for photodegradation of organic dyes. J. Inorg. Organomet. Polym. 31, 2483–2491 (2021). https://doi.org/10.1007/s10904-020-01846-6

    Article  CAS  Google Scholar 

  33. M. Elhady, A. Abdeldaym, Effect of aluminum oxide nanoparticles additives and gamma irradiation on the structural and optical properties of syndiotactic polystyrene. Polym. Eng. Sci. 59(3), 555–565 (2019)

    Article  CAS  Google Scholar 

  34. H. Ahmed, A. Hashim, H.M. Abduljalil, Determination of optical parameters of films Of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-detectors. Ukr. J. Phys. (2020). https://doi.org/10.15407/ujpe65.6.533

    Article  Google Scholar 

  35. N.A.H. Al-Aaraji, A. Hashim, A. Hadi et al., Synthesis and enhanced optical characteristics of silicon carbide/copper oxide nanostructures doped transparent polymer for optics and photonics nanodevices. Silicon 14, 10037–10044 (2022). https://doi.org/10.1007/s12633-022-01730-7

    Article  CAS  Google Scholar 

  36. L. Gaabour, Effect of addition of TiO2 nanoparticles on structural and dielectric properties of polystyrene/polyvinyl chloride polymer blend. AIP Adv. 11(10), 105120 (2021). https://doi.org/10.1063/5.0062445

    Article  ADS  CAS  Google Scholar 

  37. A. Hashim, M.H. Abbas, N.A.H. Al-Aaraji et al., Controlling the morphological, optical and dielectric characteristics of PS/SiC/CeO2 nanostructures for nanoelectronics and optics fields. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-022-02485-9

    Article  Google Scholar 

  38. H. Elhosiny Ali et al., Microstructure study and linear/nonlinear optical performance of Bi-embedded PVP/PVA films for optoelectronic and optical cut-off applications. Polymers 14(9), 1741 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Kazaoui and N. Minami, Optical and electrical properties of C60, C70, nanotubes and endohedral fullerenes. in Macromolecular Science and Engineering: New Aspects (Springer, 1999), pp. 363–392

  40. J. Martin, M. Vázquez, M. Hernandez-Velez, C. Mijangos, Ordered arrays of magnetic polymer-based nanorods by template synthesis. J. Nanosci. Nanotechnol. 9(10), 5898–5902 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. A.M. Alsaad, A.A. Ahmad, I.A. Qattan, A.-R. El-Ali, S.A.A. Fawares, Q.M. Al-Bataineh, Synthesis of optically tunable and thermally stable PMMA–PVA/CuO NPs hybrid nanocomposite thin films. Polymers 13(11), 1715 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. Ahmed, A. Hashim, Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans. Electr. Electron. Mater. 22, 335–345 (2021). https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  43. A. Hazim, H.M. Abduljalil, A. Hashim, Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans. Electr. Electron. Mater. 21, 550–563 (2020). https://doi.org/10.1007/s42341-020-00210-2

    Article  Google Scholar 

  44. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7(4), 419–431 (2018)

    Article  CAS  Google Scholar 

  45. S.S. El-Khiyami, A. Ismail, R. Hafez, Characterization, optical and conductivity study of nickel oxide based nanocomposites of polystyrene. J. Inorg. Organomet. Polym. Mater. 31(11), 4313–4325 (2021)

    Article  CAS  Google Scholar 

  46. H. Miqdad, Effect of carbon black nanoparticles on the optical properties of poly (ethylene oxide) Films. Int. J. Appl. Eng. 13(6), 4333–4341 (2018)

    Google Scholar 

  47. S.S. Alharthi, M. Althobaiti, A.A. Alkathiri, E.E. Ali, A. Badawi, Exploring the functional properties of PVP/PVA blend incorporated with non-stoichiometric SnS for optoelectronic devices. J. Taibah Univ. Sci. 16(1), 317–329 (2022)

    Article  Google Scholar 

  48. A. Hashim, A. Hadi, M.H. Abbas, Synthesis and unraveling the morphological and optical features of PVP-Si3N4-Al2O3 nanostructures for optical and renewable energies fields. Silicon 15, 6431–6438 (2023). https://doi.org/10.1007/s12633-023-02529-w

    Article  CAS  Google Scholar 

  49. I. Leontyev, A. Stuchebrukhov, Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13(7), 2613–2626 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. A. Alsaad, A.R. Al Dairy, A. Ahmad, I.A. Qattan, S. Al Fawares, Q. Al-Bataineh, Synthesis and characterization of polymeric (PMMA-PVA) hybrid thin films doped with TiO2 nanoparticles using dip-coating technique. Crystals 11(2), 99 (2021)

    Article  CAS  Google Scholar 

  51. A. Kausar, Technical viewpoint on polystyrene/graphene nanocomposite. J. Thermoplast. Compos. Mater. 35(10), 1757–1771 (2022)

    Article  CAS  Google Scholar 

  52. W.O. Obaid, A. Hashim, Synthesis and augmented optical properties of PC/SiC/TaC hybrid nanostructures for potential and photonics fields. Silicon 14, 11199–11207 (2022). https://doi.org/10.1007/s12633-022-01854-w

    Article  CAS  Google Scholar 

  53. A.F. Al-Shawabkeh, Z.M. Elimat, K.N. Abushgair, Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films. J. Thermoplast. Compos. Mater. 36(3), 899–915 (2023)

    Article  CAS  Google Scholar 

  54. G.S. Ezat, S.A. Hussen, S.B. Aziz, Structure and optical properties of nanocomposites based on polystyrene (PS) and calcium titanate (CaTiO3) perovskite nanoparticles. Optik 241, 166963 (2021)

    Article  ADS  CAS  Google Scholar 

  55. O.B. Fadil, A. Hashim, Fabrication and tailored optical characteristics of CeO2/SiO2 nanostructures doped PMMA for electronics and optics fields. Silicon 14, 9845–9852 (2022). https://doi.org/10.1007/s12633-022-01728-1

    Article  CAS  Google Scholar 

  56. A. Hashim, B. Mohammed, A. Hadi et al., Synthesis and augment structural and optical characteristics of PVA/SiO2/BaTiO3 nanostructures films for futuristic optical and nanoelectronics applications. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02846-y

    Article  Google Scholar 

  57. G. Shimoga, S.-Y. Kim, High-k polymer nanocomposite materials for technological applications. Appl. Sci. 10(12), 4249 (2020)

    Article  CAS  Google Scholar 

  58. A. Hashim, A. Hadi, N.A.H. Al-Aaraji et al., Fabrication and augmented structural, optical and electrical features of PVA/Fe2O3/SiC hybrid nanosystem for optics and nanoelectronics fields. Silicon (2023). https://doi.org/10.1007/s12633-023-02471-x

    Article  Google Scholar 

  59. P. L. Reddy et al., Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles. J. Mater. Sci. Mater. Electron. 30, 4676–4687 (2019)

  60. A.F. Kadhim, A. Hashim, Fabrication and tuning the structural and dielectric characteristics of PS/SiO2/SrTiO3 hybrid nanostructures for nanoelectronics and energy storage devices. Silicon 15, 4613–4621 (2023). https://doi.org/10.1007/s12633-023-02381-y

    Article  CAS  Google Scholar 

  61. K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Mater. Focus (2016). https://doi.org/10.1166/mat.2016.1371

    Article  Google Scholar 

  62. A. Hashim, A. Hadi, M.H. Abbas, Fabrication and unraveling the morphological, optical and electrical features of PVA/SnO2/SiC nanosystem for optics and nanoelectronics applications. Opt. Quant. Electron. 55, 642 (2023). https://doi.org/10.1007/s11082-023-04929-z

    Article  CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical Approval

Ethical approval (Research involving human participants, their data or biological) material. The Research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M.H., Ibrahim, H., Hashim, A. et al. Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe2O4 Nanocomposites Films for Nanoelectronics and Optics Applications. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00524-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00524-5

Keywords

Navigation