Skip to main content
Log in

Influence on Post-treatment Process on Optical and Electrical Properties of IZO Thin Films

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we studied the post-treatment effect in order to optimize the optical and electrical properties of the IZO transparent conductive oxide (TCO). We used the rapid thermal annealing (RTA) process, which provides direct thermal energy, and the micro-wave treatment (MWT) process, which provides vibrational energy of particles among the various methods. The sheet resistance and transparency were investigated in order to comparatively evaluate their electrical and optical characteristics. First, the RTA process shows a sharp increase in sheet resistance, which is due to thermal damage, as a result of sheet resistance, whereas the MWT process shows a stable change in sheet resistance with low resistance values, which are in a range of 17.73–33.95 Ω/□. The sheet resistance of the IZO film after MWT was improved by approximately 47% compared to the IZO film after RTA. The transmittance after both the RTA and the MWT was then similarly observed to be 70% over in the visible light region of 400–700. This result therefore indicates that the MWT process does not cause thermal damage to the IZO films, and it provides excellent electrical and optical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article, and the datasets used and detailed analyzed reports during the current study are available from the corresponding author on reasonable request.

References

  1. N. Taga, M. Maekawa, Y. Shigesato, I. Yasui, M. Kamei, T.E. Haynes, “Deposition of heteroepitaxial in 2O3 thin films by molecular beam epitaxy. Jpn. J. Appl. Phys. 37, 6524–6529 (1998)

    Article  ADS  CAS  Google Scholar 

  2. C. Nunes, A.M. de Carvalho, Botelho do Rego, A Amaral, P Brogueira and G Lavareda, Effect of substrate temperature on the surface structure, composition and morphology of indium–tin oxide films. Surf. Coat. Technol. 124, 70–75 (2000)

    Article  Google Scholar 

  3. A.A. Serkov et al., Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics. Sci. Rep. 9(1), 1773 (2019)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  4. O. Malik, F.J. de la Hidalga-Wade, Sputtered indium tin oxide films for optoelectronic applications. Optoelectron.-Adv. Device Struct. 4, 297–314 (2017)

    Google Scholar 

  5. K. Maki, N. Komiya, A. Suzuki, Fabrication of thin films of ITO by aerosol CVD. Thin Solid Films 445(2), 224–228 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Y. Mika et al., Characteristics of indium tin oxide thin films prepared using electron beam evaporation. Thin solid films 447, 115–118 (2004)

    Google Scholar 

  7. G. Yun et al., Preparation of ITO films using a spray pyrolysis solution containing an acetylacetone chelating agent. Mater. Sci. -Poland 32, 66–70 (2014)

    Article  ADS  Google Scholar 

  8. G. Amit Kumar et al., Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum 177, 109353 (2020)

    Article  Google Scholar 

  9. Djurišić Aleksandra B et al., ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012)

    Article  Google Scholar 

  10. M.K. Ryu et al., High performance thin film transistor with cos puttered amorphous Zn–In–Sn–O channel: combinatorial approach. Appl. Phys. Lett. 95(7), 072104 (2009)

    Article  ADS  Google Scholar 

  11. Y.-H. Chiang et al., The utilization of IZO transparent conductive oxide for tandem and substrate type perovskite solar cells. J. Phys. D Appl. Phys. 51(42), 424002 (2018)

    Article  Google Scholar 

  12. V. Sittinger et al., Indium-based transparent conductive oxides developed for perovskite and perovskite-silicon tandem solar cell applications. Surf. Coat. Technol. 457, 129286 (2023)

    Article  CAS  Google Scholar 

  13. H.J. Kim, J. Jung, H.J. Kim, Enhancement of electrical characteristics and stability of self-patterned In–Zn–O thin-film transistors based on photosensitive precursors. Sci. Rep. 10(1), 18853 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Wang, H. Yang, J. Li, X. Zhang, L. Wang, J. Xiao, L. Lu, Synergistically enhanced performance and reliability of abrupt metal-oxide heterojunction transistor. Adv. Electron. Mater. 9(1), 2200807 (2023)

    Article  CAS  Google Scholar 

  15. J. Park, D. Huh, S. Son, W. Kim, S. Ju, H. Lee, Transparent, flexible, and low-operating-voltage resistive switching memory based on Al2O3/IZO Multilayer. Global Chall. 6(7), 2100118 (2022)

    Article  Google Scholar 

  16. V.L. Patil, D.S. Dalavi, S.B. Dhavale, S.A. Vanalakar, N.L. Tarwal, A.S. Kalekar, P.S. Patil, Indium doped ZnO nanorods for chemiresistive NO 2 gas sensors. New J. Chem. 46(16), 7588–7597 (2022)

    Article  CAS  Google Scholar 

  17. N. Liu, L.Q. Zhu, P. Feng, C.J. Wan, Y.H. Liu, Y. Shi, Q. Wan, Flexible sensory platform based on oxide-based neuromorphic transistors. Sci. Rep. 5(1), 18082 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. Gonçalves et al., Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films. Thin solid films 515(24), 8562–8566 (2007)

    Article  ADS  Google Scholar 

  19. P. Barquinha et al., Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films 515(24), 8450–8454 (2007)

    Article  ADS  CAS  Google Scholar 

  20. T. Pi, D. Xiao, H. Yang, G. He, X. Wu, W. Liu et al., High-performance a-IGZO TFT fabricated with ultralow thermal budget via microwave annealing. IEEE Trans. Electron Devices 69(1), 156–159 (2022)

    Article  ADS  CAS  Google Scholar 

  21. M. Chae et al., Improved electrical and optical properties of IGZO transparent conductive oxide due to microwave treatment: application to silicon solar cells. IEEE Access 10, 90401–90407 (2022)

    Article  Google Scholar 

  22. M.S. Kang, W.J. Cho, Effect of microwave irradiation power on resistive switching performance in solution-processed aluminum oxide resistive memory. J. Phys. Chem. Solids 123, 52–58 (2018)

    Article  ADS  CAS  Google Scholar 

  23. F. Shan, J.Y. Lee, H.L. Zhao, S.G. Choi, J.H. Koh, S.J. Kim, Multi-stacking indium zinc oxide thin-film transistors post-annealed by femtosecond laser. Electron. Mater. Lett. 17(5), 451–458 (2021)

    Article  ADS  CAS  Google Scholar 

  24. H.L. Zhao, G. Tarsoly, F. Shan, X.L. Wang, J.Y. Lee, Y.J. Jeong, S.J. Kim, Impact of pre-annealing process on electrical properties and stability of indium zinc oxide thin-film transistors. Sci. Rep. 12(1), 19497 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (b) 252(8), 1700–1710 (2015)

    Article  ADS  CAS  Google Scholar 

  26. R. Raciti et al., Optical bandgap of semiconductor nanostructures: methods for experimental data analysis. J. Appl. Phys. 121(23), 234304 (2017)

    Article  ADS  Google Scholar 

  27. K.G. Saw et al., New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films. PloS one 10(10), e0141180 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. Lee, A. Lee, H.D. Kim, IZO/ITO double-layered transparent conductive oxide for silicon heterojunction solar cells. IEEE Access 10, 77170–77175 (2022)

    Article  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2021R1A6A3A01086866, NRF-2022R1F1A1060655), the Nano-Material Technology Development Program, NRF, Ministry of Science, ICT, and Future Planning (2009–0082580), and in part by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) via the Competency Development Program for Industry Specialist under grant P0020966.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H-DK; Formal analysis and investigation: JJ, DL, and MC; Writing—original draft preparation: JJ and MC; Writing—review and editing: DL and H-DK; Funding acquisition: H-DK; Resources: MC; Supervision: H-DK.

Corresponding author

Correspondence to Hee-Dong Kim.

Ethics declarations

Conflict of interest

The authors confirm that this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Lee, D., Chae, M. et al. Influence on Post-treatment Process on Optical and Electrical Properties of IZO Thin Films. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00517-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00517-4

Keywords

Navigation