Skip to main content
Log in

Enhancing Performance of Perovskite Nanocrystal Light-Emitting Diodes with Perfluorinated Ionomer and PEDOT:PSS

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) stands as a prominent hole transport layer (HTL) in perovskite light-emitting diodes (LEDs), known for its remarkable electrical conductivity and light transmittance. However, its electron-blocking properties have shown limitations in achieving optimal charge balance by allowing excessive electron transport. To overcome this challenge, we introduce poly(triarylamine) (PTAA) as an intermediate HTL material between the PEDOT:PSS layer and the perovskite emission layer. By leveraging PTAA's higher lowest unoccupied molecular orbital (LUMO) level of 1.8 eV compared to PEDOT:PSS, a substantial energy barrier is established. This energy barrier effectively traps electrons within the emission layer, elevating radiative recombination rates and consequently enhancing overall efficiency. The notable LUMO energy gap of approximately 1.7 eV between PTAA and CsPbBr3 further contributes to efficient electron confinement. To optimize hole injection and promote charge balance, we address the highest occupied molecular orbital (HOMO) level mismatch between PEDOT:PSS and PTAA. This is achieved by incorporating perfluorinated ionomer (PFI) into PEDOT:PSS, inducing a band bending effect. The resulting energy level alignment leads to improved device performance. Experimental validation of this energy level engineering strategy in light-emitting diodes (LEDs) demonstrates substantial enhancements. The external quantum efficiency (EQE) achieves a remarkable 2.8-fold increase, advancing from 1.07% to 2.81%, when compared to devices employing PEDOT:PSS alone. Moreover, the current efficiency (CE) experiences a 2.5-fold augmentation, surging from 3.74 cd/A to 9.35 cd/A. The luminance levels soar by an impressive 11.3-fold, ascending from 1,745 cd/m2 to an impressive 19,780 cd/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Lin, J. Xing, L.N. Quan, F.P.G. Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, Z. Wei, Nature 562, 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3

    Article  CAS  Google Scholar 

  2. W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A.J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.M. Liu, A. Petrozza, J. Wang, L.M. Liu, W. Huang, F. Gao, Nat. Photon. 13, 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x

    Article  CAS  Google Scholar 

  3. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, Nat. Nanotechnl. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149

    Article  CAS  Google Scholar 

  4. H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, Science 350, 1222–1225 (2015). https://doi.org/10.1126/science.aad1818

    Article  CAS  Google Scholar 

  5. J.Q. Li, S.G.R. Bade, X. Shan, Z.B. Yu, Adv. Mater. 27, 5196–5202 (2015). https://doi.org/10.1002/adma.201502490

    Article  CAS  Google Scholar 

  6. Z.G. Xiao, R.A. Kerner, L.F. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, B.P. Rand, Nat. Photon. 11, 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269

    Article  CAS  Google Scholar 

  7. N.N. Wang, L. Cheng, R. Ge, S.H. Zhang, Y.F. Miao, Nat. Photon. 10, 699–705 (2016). https://doi.org/10.1038/nphoton.2016.185

    Article  CAS  Google Scholar 

  8. M.G. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini, Nat. Nanotechnl. 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110

    Article  CAS  Google Scholar 

  9. M. Ban, Y. Zou, J.P.H. Rivett, Y. Yang, T.H. Thomas, Nat. Commun. 9, 3892 (2018). https://doi.org/10.1038/s41467-018-06425-5

    Article  CAS  Google Scholar 

  10. P. Chen, Y. Meng, M. Ahmadi, Q.M. Peng, C.H. Gao, L. Xu, M. Shao, Z.H. Xiong, B. Hu, Nano Energy 50, 615–622 (2018). https://doi.org/10.1016/j.nanoen.2018.06.008

    Article  CAS  Google Scholar 

  11. P. Chen, Z.Y. Xiong, X.Y. Wu, M. Shao, X.J. Ma, Z.H. Xiong, C.H. Gao, J. Phys. Chem. Lett. 8, 1810–1818 (2017). https://doi.org/10.1021/acs.jpclett.7b00368

    Article  CAS  Google Scholar 

  12. Y. Meng, M. Ahmadi, X. Wu, T. Xu, L. Xu, Z. Xiong, P. Chen, Org. Electron. 64, 47–53 (2019). https://doi.org/10.1016/j.orgel.2018.10.014

    Article  CAS  Google Scholar 

  13. J.H. Kim, Y.K. Seo, J.W. Han, J.Y. Oh, Y.H. Kim, Appl. Chem. Eng. 26(3), 275–279 (2015). https://doi.org/10.14478/ace.2015.101

    Article  CAS  Google Scholar 

  14. Y. Li, C. Liang, G. Wang, J. Li, S. Chen, S. Yang, G. Xing, H. Pan, Photon. Res. 8(10), A39–A49 (2020). https://doi.org/10.1364/PRJ.398529

    Article  CAS  Google Scholar 

  15. Q. Wang, C. Bi, J. Huang, Nano Energy 15, 275–280 (2015). https://doi.org/10.1016/j.nanoen.2015.04.029

    Article  CAS  Google Scholar 

  16. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747

    Article  CAS  Google Scholar 

  17. D.Y. Luo, W.Q. Yang, Z.P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G.F. Trindade, J.F. Watts, Z.J. Xu, T.H. Liu, K. Chen, F.J. Ye, P. Wu, L.C. Zhao, J. Wu, Y.G. Tu, Y.F. Zhang, X.Y. Yang, W. Zhang, R.H. Friend, Q.H. Gong, H.J. Snaith, R. Zhu, Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282

    Article  CAS  Google Scholar 

  18. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, U.L. Dong, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  19. K.G. Lim, Polym. Sci. Technol. 28(6), 466–469 (2017)

    CAS  Google Scholar 

  20. K.G. Lim, S. Ahn, Y.H. Kim, Y. Qi, T.W. Lee, Energy Environ. Sci. 9, 932 (2016). https://doi.org/10.1039/C5EE03560K

    Article  CAS  Google Scholar 

  21. H. Kim, K.H. Lim, T.W. Lee, Energy Environ. Sci. 9, 12 (2016). https://doi.org/10.1039/C5EE02194D

    Article  CAS  Google Scholar 

  22. K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lim, Adv. Mater. 26, 6461 (2014). https://doi.org/10.1002/adma.201401775

    Article  CAS  Google Scholar 

  23. Y.H. Kim, H.C. Cho, J.H. Heo, T.S. Kim, N.S. Myoung, C.L. Lee, S.H. Im, T.W. Lee, Adv. Mater. 27(7), 1248–1254 (2014). https://doi.org/10.1002/adma.201403751

    Article  CAS  Google Scholar 

  24. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 30(30), 1800764 (2018). https://doi.org/10.1002/adma.201800764

    Article  CAS  Google Scholar 

  25. E.J. Bae, Y.H. Kang, K.S. Jang, S.Y. Cho, Sci. Rep. 6, 18805 (2016). https://doi.org/10.1038/srep18805

    Article  CAS  Google Scholar 

  26. C.T. Howells, S. Saylan, H.R. Kim, K. Marbou, T. Aoyama, A. Nakao, M. Uchiyama, I.D.W. Samuel, D.W. Kim, M.S. Dahlem, P. Andre, J. Mater. Chem. A. 6, 16012–16028 (2018). https://doi.org/10.1002/adma.201403751

    Article  CAS  Google Scholar 

  27. S. Ma, W. Qiao, T. Cheng, B. Zhang, J. Yao, A. Alsaedi, T. Hayat, Y. Ding, Z. Tan, S. Dai, ACS Appl. Mater. Interfaces 10, 3902–3911 (2018). https://doi.org/10.1021/acsami.7b19053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Institute for Advancement of Technology (KIAT) funded by the Korea Government (MOTIE) (N0001415182419) and, National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2020R1A6A1A03038697, and NRF-RS-2023-00246901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Hwan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, G., Yun, D., Ha, Y. et al. Enhancing Performance of Perovskite Nanocrystal Light-Emitting Diodes with Perfluorinated Ionomer and PEDOT:PSS. Trans. Electr. Electron. Mater. 25, 40–47 (2024). https://doi.org/10.1007/s42341-023-00499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00499-9

Keywords

Navigation