Skip to main content
Log in

Design and Numerical Investigation of CsSn0.5Ge0.5I3 Perovskite Photodetector with Optimized Performances

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

An optoelectronic device to detects incident light and convert it into an electrical signal is known as a photodetector. To obtain higher responsivity and detectivity of photo detector, suitable materials are required. In the present study, an inorganic lead-free perovskite CsSn0.5Ge0.5I3 material is utilized as an active layer for photodetector applications, together with Nb2O5 as electron transport layer (ETL) and CuSbSe2 as hole transport layer (HTL). The perovskite photodetector (PePd) is simulated by employing Solar Cell Capacitance Simulator-One Dimensional (SCAPS-1D) software. We have thoroughly investigated the impact of various parameters such as the defect density and donor concentration of active layer, series and shunt resistance, the thickness of active layer and metal work function of back contact using numerical simulation. Under standard AM 1.5 G irradiance, we obtained the detectivity (D*) and responsivity (R) of the proposed photodetector are 3.3 × 1013 Jones and 0.54 AW−1 respectively. The proposed device performances reveal that it is suitable for high performance photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Z. Chen, Z. Kang, C. Rao, Y. Cheng, N. Liu, Z. Zhang, L. Li, Y. Gao, Improving performance of hybrid graphene–perovskite photodetector by a scratch channel. Adv. Electron. Mater. 5, 1900168 (2019). https://doi.org/10.1002/aelm.201900168

    Article  CAS  Google Scholar 

  2. Y. Jiao, G. Lu, Y. Feng, C. Zhang, W. Wang, S. Wu, M. Chen, M. Ma, W. Li, C. Yang, W. Li, Towards high sensitivity infrared detector using Cu2CdxZn1xSnSe4 thin film by SCAPS simulation. Sol. Energy 225, 375–381 (2021). https://doi.org/10.1016/j.solener.2021.07.044

    Article  CAS  Google Scholar 

  3. V. Srivastava, P. Lohia, R.K. Chauhan, Theoretical study of a lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerg. Mater. Res. (2022). https://doi.org/10.1680/jemmr.22.00059

    Article  Google Scholar 

  4. A. Gupta, V. Srivastava, S. Yadav, P. Lohia, D.K. Dwivedi, A. Umar, M.H. Mahmoud, Performance enhancement of perovskite solar cell using SrTiO3 as electron transport layer. J. Nanoelectron. Optoelectron. 18, 452–458 (2023). https://doi.org/10.1166/jno.2023.3407

    Article  CAS  Google Scholar 

  5. M.K. Hossain, M.K.A. Mohammed, R. Pandey, A.A. Arnab, M.H.K. Rubel, K.M. Hossain, M.H. Ali, M.F. Rahman, H. Bencherif, J. Madan, M.R. Islam, D.P. Samajdar, S. Bhattarai, Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy Fuels 37, 6078–6098 (2023). https://doi.org/10.1021/acs.energyfuels.3c00035

    Article  CAS  Google Scholar 

  6. M.K. Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7, 43210–43230 (2022). https://doi.org/10.1021/acsomega.2c05912

    Article  CAS  Google Scholar 

  7. M.K. Hossain, G.F.I. Toki, D.P. Samajdar, M. Mushtaq, M.H.K. Rubel, R. Pandey, J. Madan, M.K.A. Mohammed, Md.R. Islam, Md.F. Rahman, H. Bencherif, Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega 8, 22466–22485 (2023). https://doi.org/10.1021/acsomega.3c00306

    Article  CAS  Google Scholar 

  8. M.K. Hossain, G.I. Toki, A. Kuddus, M.H.K. Rubel, M.M. Hossain, H. Bencherif, M.F. Rahman, M.R. Islam, M. Mushtaq, An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 13, 2521 (2023). https://doi.org/10.1038/s41598-023-28506-2

    Article  CAS  Google Scholar 

  9. J. Madan, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 197, 212–221 (2020). https://doi.org/10.1016/j.solener.2020.01.006

    Article  CAS  Google Scholar 

  10. M.K. Hossain, D.P. Samajdar, R.C. Das, A.A. Arnab, M.F. Rahman, M.H.K. Rubel, M.R. Islam, H. Bencherif, R. Pandey, J. Madan, M.K.A. Mohammed, Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement. Energy Fuels 37, 3957–3979 (2023). https://doi.org/10.1021/acs.energyfuels.3c00181

    Article  CAS  Google Scholar 

  11. M.K. Hossain, G.F. Ishraque Toki, D.P. Samajdar, M.H.K. Rubel, M. Mushtaq, M.R. Islam, M.F. Rahman, S. Bhattarai, H. Bencherif, M.K.A. Mohammed, R. Pandey, J. Madan, Photovoltaic performance investigation of Cs3Bi2I9-based perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks. Energy Fuels 37, 7380–7400 (2023). https://doi.org/10.1021/acs.energyfuels.3c00540

    Article  CAS  Google Scholar 

  12. M.K. Hossain, G.F.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.R. Islam, M.H.K. Rubel, H. Bencherif, J. Madan, M.K.A. Mohammed, Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New J. Chem. 47, 4801–4817 (2023). https://doi.org/10.1039/d2nj06206b

    Article  CAS  Google Scholar 

  13. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  14. M.K. Hossain, G.F.I. Toki, J. Madan, R. Pandey, H. Bencherif, M.K.A. Mohammed, M.R. Islam, M.H.K. Rubel, M.F. Rahman, S. Bhattarai, D.P. Samajdar, A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu2FeSnS4 as charge transport layers. New J. Chem. 47, 8602–8624 (2023). https://doi.org/10.1039/d3nj00320e

    Article  CAS  Google Scholar 

  15. D.B. Mitzi, A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4. J. Solid State Chem. 145(2), 694–704 (1999)

    Article  CAS  Google Scholar 

  16. S. Singh, S. Kumar, M. Deo, R.K. Chauhan, Unveiling the potential of organometal halide perovskite materials in enhancing photodetector performance. Opt. Quant. Electron. 55, 846 (2023). https://doi.org/10.1007/s11082-023-05127-7

    Article  CAS  Google Scholar 

  17. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  18. M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, N.P. Padture, Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-018-07951-y

    Article  CAS  Google Scholar 

  19. L.M. Livingston, R.T. Prabu, R. Radhika, A. Kumar, Simulation of native oxide-passivated CsSn0.5Ge0.5I3 highly stable lead-free inorganic perovskite solar cell. Phys. Status Solidi (a) 220, 2300227 (2023). https://doi.org/10.1002/pssa.202300227

    Article  CAS  Google Scholar 

  20. A. Chetia, D. Saikia, S. Sahu, Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation. Optik 269, 169804 (2022). https://doi.org/10.1016/j.ijleo.2022.169804

    Article  CAS  Google Scholar 

  21. S. Chaudhary, S.K. Gupta, C.M.S. Negi, Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Mater. Sci. Semicond. Process. 109, 104916 (2020). https://doi.org/10.1016/j.mssp.2020.104916

    Article  CAS  Google Scholar 

  22. H. Yao, L. Liu, Design and optimize the performance of self-powered photodetector based on PbS/TiS3 heterostructure by SCAPS-1D. Nanomaterials 12, 325 (2022). https://doi.org/10.3390/nano12030325

    Article  CAS  Google Scholar 

  23. Y. Wang, D. Yang, X. Zhou, S.M. Alshehri, T. Ahamad, A. Vadim, D. Ma, Vapour-assisted multi-functional perovskite thin films for solar cells and photodetectors. J. Mater. Chem. C Mater. 4, 7415–7419 (2016). https://doi.org/10.1039/c6tc00747c

    Article  CAS  Google Scholar 

  24. H. Zhou, J. Mei, M. Xue, Z. Song, H. Wang, High-stability, self-powered perovskite photodetector based on a CH3NH3PbI3/GaN heterojunction with C60 as an electron transport layer. J. Phys. Chem. C 121, 21541–21545 (2017). https://doi.org/10.1021/acs.jpcc.7b07536

    Article  CAS  Google Scholar 

  25. S.P. Sadanand, S. Rai, P. Lohia, D.K. Dwivedi, Comparative study of the CZTS, CuSbS2 and CuSbSe2 solar photovoltaic cell with an earth-abundant non-toxic buffer layer. Sol. Energy 222, 175–185 (2021). https://doi.org/10.1016/j.solener.2021.05.013

    Article  CAS  Google Scholar 

  26. A.K. Patel, P.K. Rao, R. Mishra, S.K. Soni, Numerical study of a high-performance thin film CIGS solar cell with a-Si and MoTe2 hole transport layer. Optik 243, 167498 (2021). https://doi.org/10.1016/j.ijleo.2021.167498

    Article  CAS  Google Scholar 

  27. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, n.d. www.elsevier.com/locate/tsf

  28. K. Decock, S. Khelifi, M. Burgelman, Modelling multivalent defects in thin film solar cells. Thin Solid Films (2011). https://doi.org/10.1016/j.tsf.2010.12.039

    Article  Google Scholar 

  29. M.K. Hossain, A.A. Arnab, D.P. Samajdar, M.H.K. Rubel, M.M. Hossain, M.R. Islam, R.C. Das, H. Bencherif, M.F. Rahman, J. Madan, R. Pandey, S. Bhattarai, M. Amami, D.K. Dwivedi, Design insights into La2NiMnO6-based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D frameworks. Energy Fuels (2023). https://doi.org/10.1021/acs.energyfuels.3c02361

    Article  Google Scholar 

  30. V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead - free perovskite solar cells using various hole transport material by numerical simulation. Trans. Electr. Electron. Mater. (2022). https://doi.org/10.1007/s42341-022-00412-w

    Article  Google Scholar 

  31. S. Kumar, R.K. Chauhan, Performance up-gradation of CIGS solar cell using Ag2S quantum dot as buffer layer. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00992-0

    Article  Google Scholar 

  32. V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00946-5

    Article  Google Scholar 

  33. W. Qiu, L. Wu, X. Ke, J. Yang, W. Zhang, Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Sci. Rep. 5, 13643 (2015). https://doi.org/10.1038/srep13643

    Article  Google Scholar 

  34. J.E. Boschker, T. Markurt, M. Albrecht, J. Schwarzkopf, Heteroepitaxial growth of T-Nb2O5 on SrTiO3. Nanomaterials 8, 895 (2018). https://doi.org/10.3390/nano8110895

    Article  CAS  Google Scholar 

  35. M.K.A. Mohammed, A.K. Al-Mousoi, S. Singh, A. Kumar, M.K. Hossain, S.Q. Salih, P. Sasikumar, R. Pandey, A.A. Yadav, Z.M. Yaseen, Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer. Opt. Mater. 138, 113702 (2023). https://doi.org/10.1016/j.optmat.2023.113702

    Article  CAS  Google Scholar 

  36. H. Dixit, D. Punetha, S.K. Pandey, Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019). https://doi.org/10.1016/j.ijleo.2018.11.028

    Article  CAS  Google Scholar 

  37. M. Deo, R.K. Chauhan, Tweaking the performance of thin film CIGS solar cell using InP as buffer layer. Optik 273, 170357 (2023). https://doi.org/10.1016/j.ijleo.2022.170357

    Article  CAS  Google Scholar 

  38. A.K. Chaudhary, S. Verma, R.K. Chauhan, Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH 3 NH 3 GeI 3 as ETL. Eng. Res. Express 5, 035039 (2023). https://doi.org/10.1088/2631-8695/acee45

    Article  Google Scholar 

  39. J. Singh, S. Singh, V. Srivastava, S. Sadanand, R. Yadav, P. Lohia, D.K. Dwivedi, Performance enhancement of PbS-TBAI quantum dot solar cell with MoTe2 as hole transport layer. Phys. Status Solidi (a) (2023). https://doi.org/10.1002/pssa.202300275

    Article  Google Scholar 

  40. S. Yadav, P. Lohia, A. Sahu, Enhanced performance of double perovskite solar cell using WO3 as an electron transport material. J. Opt. (2022). https://doi.org/10.1007/s12596-022-01035-3

    Article  Google Scholar 

  41. A.K. Patel, R. Mishra, S.K. Soni, Performance analysis of a Cu(In1−xGax)Se2 solar cell with nontoxic WS2 and WSSe buffer layers. J. Electron. Mater. 51, 6168–6179 (2022). https://doi.org/10.1007/s11664-022-09863-6

    Article  CAS  Google Scholar 

  42. A. Umar, P. Tiwari, Sadanand, V. Srivastava, P. Lohia, D.K. Dwivedi, H. Qasem, S. Akbar, H. Algadi, S. Baskoutas, Modeling and simulation of tin sulfide (SnS)-based solar cell using ZnO as transparent conductive oxide (TCO) and NiO as hole transport layer (HTL). Micromachines 13, 2073 (2022). https://doi.org/10.3390/mi13122073

    Article  Google Scholar 

  43. A. Kannaujiya, A.K. Patel, S. Kannaujiya, A.P. Shah, Efficient CZTSSe thin film solar cell employing MoTe2/MoS2 as hole transport layer. Micro Nanostruct. 169, 207356 (2022). https://doi.org/10.1016/j.micrna.2022.207356

    Article  CAS  Google Scholar 

  44. E. Danladi, M. Kashif, M. Ouladsmane, I. Hossain, A.C. Egbugha, J.O. Alao, C.U. Achem, N.N. Tasie, O.S. Aremo, A.M. Umar, Modeling and simulation of> 19% highly efficient PbS colloidal quantum dot solar cell: a step towards unleashing the prospect of quantum dot absorber. Optik 291, 171325 (2023). https://doi.org/10.1166/sam.2022.4377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Burgelman and his co-worker at the Department of Electronics and Information System (ELIS), University of Ghent, Belgium for the development of SCAPS-1D simulator.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhava Srivastava.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K., Chauhan, R.K., Mishra, R. et al. Design and Numerical Investigation of CsSn0.5Ge0.5I3 Perovskite Photodetector with Optimized Performances. Trans. Electr. Electron. Mater. 25, 67–76 (2024). https://doi.org/10.1007/s42341-023-00484-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00484-2

Keywords

Navigation