Skip to main content
Log in

Deep Insight into Raised Buried Oxide SOI-Fe TFET and It’s Analog/RF and Linearity Performance Parameters

Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Here, the proposed device is a negative capacitance based ferroelectric gate stack, raised buried oxide pocket doped SOI TFET (RBOX-SOI-Fe TFET). The architecture of the device is carefully designed with proper optimization of the pocket and ferroelectric thickness to boost the on-state current, on–off current ratio, and to improve subthreshold swing. At, first the polarization versus electric field curve of the proposed device is studied. Next, the DC and the analog/RF, linearity performance analysis are illustrated. The various analog/RF performance parameters like gate-to-source capacitance (Cgs-1.7 × 10−16 F/µm), gate-to-drain capacitance (Cgd-2.3 × 10−17 F/µm), total capacitance (Cgg-1.96 × 10−16 F/µm), transconductance (7.35 × 10−3 S/µm), output conductance, corner frequency (7.1 × 1013 Hz), the gain bandwidth product (1.2 × 1013 Hz), transit time (1.4 × 10−15 s), transistor frequency product (3.1 × 1015 Hz/V), and intrinsic gain (6.91 × 103) have been investigated. The proposed device parameters have been compared with the existing devices in literature and RBOX-SOI-Fe TFET evinces an improved result in terms of both DC and Analog/RF parameters. Device simulations have been performed by Sentaurus TCAD 2D-simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Availability of Data and Materials

Data and materials collected from other literature paper are cited in reference.

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)

    Google Scholar 

  2. J.-P. Colinge (ed.), FinFETs and Other Multi-Gate Transistors (Springer, Berlin, 2008), p.73

    Google Scholar 

  3. S. Bangsaruntip et al., Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Dev. Lett. 31(9), 903–905 (2010)

    Article  CAS  Google Scholar 

  4. S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Dev. 56(3), 456–465 (2009)

    Article  CAS  Google Scholar 

  5. S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)

    Article  CAS  Google Scholar 

  6. A. Sachdeva, D. Kumar, E. Abbasian, A carbon nano-tube field effect transistor based stable, low-power 8T static random access memory cell with improved write access time. AEU-Int. J. Electron. Commun. 162, 154565 (2023)

    Article  Google Scholar 

  7. W. Choi, B.G. Park, J.D. Lee, T.J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. 28, 743–745 (2007)

    Article  CAS  Google Scholar 

  8. B. Das, B. Bhowmick, Effect of curie temperature on ferroelectric tunnel FET and its RF/analog performance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(4), 1437–1441 (2020)

    Article  Google Scholar 

  9. A.K. Saha, S.K. Gupta, Negative capacitance effects in ferroelectric heterostructures: a theoretical perspective. J. Appl. Phy. 129, 080901 (2021)

    Article  CAS  Google Scholar 

  10. M.-H. Lee, et al. “Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification, in IEEE International Electron Devices Meeting IEEE, pp. 4–5 (2013).

  11. S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52(6), 501–503 (1988)

    Article  Google Scholar 

  12. Y. Hanlumyuang, P. Sharma, Quantum capacitance: a perspective from physics to nanoelectronics. JOM 66(4), 660–663 (2014)

    Article  Google Scholar 

  13. V.L. Ginzburg, Phase transitions in ferroelectrics: some historical remarks. Phys. Usp. 44(10), 1037 (2001)

    Article  CAS  Google Scholar 

  14. K.K. Bhuwalka, S. Sedlmaier, A.K. Ludsteck, C. Tolksdorf, J. Schulze, I. Eisele, Vertical tunnel field-effect transistor. IEEE Trans. Electron. Dev. 51(2), 279–281 (2004)

    Article  CAS  Google Scholar 

  15. K. Lee, K. Park, H.J. Lee, M.S. Song, K.C. Lee, J. Namkung, J.H. Lee, J. Park, S.C. Chae, Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci. Rep. 11(1), 1–9 (2021)

    Google Scholar 

  16. S. Meriga, B. Bhowmick, Investigation of a dual gate pocket-doped drain engineered tunnel FET and its reliability issues. Appl. Phys. A 129(2), 1–11 (2023)

    Article  Google Scholar 

  17. B. Bhowmick, J. Sen, S. Baishya, Optimization and length scaling of raised drain buried oxide SOI tunnel FET. Electron. Lett. 49(16), 1031–1033 (2013)

    Article  CAS  Google Scholar 

  18. P. Ghosh, B. Bhowmick, Investigation of electrical characteristics in a ferroelectric L-patterned gate dual tunnel diode TFET. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(11), 2440–2444 (2020)

    Article  Google Scholar 

  19. S. Meriga, B. Bhowmick, Compact drain current model of a double-gate raised buried oxide TFET for integrated circuit application. J. Comput. Electron. (2023). https://doi.org/10.1007/s10825-023-02077-x

    Article  Google Scholar 

  20. TCAD Sentaurus Device User’s Manual Synopsys Mountain View CA USA (2010).

  21. H. Zhang, S. Chen, H. Liu, S. Wang, D. Wang, X. Fan, C. Chong, C. Yin, T. Gao, Polarization gradient effect of negative capacitance LTFET. Micromachines 13(3), 344 (2022)

    Article  Google Scholar 

  22. Z. Yang, Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Dev. Lett. 37(7), 839–842 (2016)

    Article  CAS  Google Scholar 

  23. L.D. Landau, I.M. Khalatnikov, On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk SSSRSSSR 96, 469–472 (1954)

    Google Scholar 

  24. M. Kobayashi, K. Jang, N. Ueyama, T. Hiramoto, Negative capacitance for boosting tunnel FET performance. IEEE Trans. Nanotechnol. 16, 253–258 (2017)

    Article  CAS  Google Scholar 

  25. C. Liu, P.G. Chen, M.J. Xie, S.N. Liu, J.W. Lee, S.J. Huang, S. Liu, Y.S. Chen, H.Y. Lee, M.H. Liao et al., Simulation-based study of negative-capacitance double-gate tunnel field-effect transistor with ferroelectric gate stack. J. Appl. Phys. 55, 04EB08 (2016)

    Article  Google Scholar 

  26. Zhao, Y., Liang, Z., Huang, Q., Wang, H., Peng, Y., Han, G., Huang, R.: “Experimental study on the transient response of negative capacitance tunnel FET, in Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), pp. 88–90 (2019).

  27. B. Das, B. Bhowmick, Noise behavior of ferro electric tunnel FET. Microelectron. J. 96, 104677 (2020)

    Article  CAS  Google Scholar 

  28. T. Mitsui, W. Martienssen, H. Warlimont. “Ferroelectrics and antiferroelectrics”. Springer Handbook of Condensed Matter and Materials Data (Springer, Heidelberg), pp. 903–938 (2005).

  29. Mayer, F., et al. “Impact of SOI, Si1−xGex and Ge substrates on CMOS compatible tunnel FET performance”, in IEEE International Electron Devices Meeting IEEE (2008).

  30. A. Guo, P. Matheu, T.-J.K. Li, SOI TFET ION/IOFF enhancement via back biasing. IEEE Trans. Electron Dev. 58(10), 3283–3285 (2011)

    Article  Google Scholar 

  31. B. Das, B. Bhowmick, Impact of traps on DC, analog/RF, and linearity performance of ferro-TFET. SILICON 15(5), 2359–2369 (2022)

    Article  Google Scholar 

  32. M. Zare, F. Peyravi, S.E. Hosseini, Impact of hetero-dielectric ferroelectric gate stack on analog/RF performance of tunnel FET. J. Electron. Mater. 49, 5638–5646 (2020)

    Article  CAS  Google Scholar 

  33. K.K. Kavi et al., Design, simulation, and work function trade for DC and analog/RF performance enhancement in dual material hetero dielectric double gate tunnel FET. SILICON 14(15), 10101–10113 (2022)

    Article  CAS  Google Scholar 

  34. J. Madan, R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Dev. Mater. Reliab. 16(2), 227–234 (2016)

    Article  CAS  Google Scholar 

  35. P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Dev. 59(12), 3263–3268 (2012)

    Article  Google Scholar 

  36. W.M. Reddick, G.A.J. Amaratunga, Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)

    Article  CAS  Google Scholar 

  37. R.K. Maurya et al., Effect of curie temperature on electrical parameters of NC-FinFET and digital switching application of NC-FinFET. Microelectron. J. 139, 105892 (2023)

    Article  CAS  Google Scholar 

  38. E. Abbasian, A. Aminzadeh, S.T. Anvari, GNRFET-and CNTFET-based designs of highly efficient 22 T unbalanced single-trit ternary multiplier cell. Arab. J. Sci. Eng. 9, 1–16 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the Electronics and Communication Engineering Department, NIT, Silchar.

Funding

No funding is associated with this paper.

Author information

Authors and Affiliations

Authors

Contributions

SM: plotted the graphs and written the paper. BB: found out the problems and reviewed it. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Sirisha Meriga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests and known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Authors would like to give their consent to participate.

Consent for Publication

Authors would like to give their consent to publish the paper if accepted.

Ethics Approval

This is ethically approved.

Informed Consent

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meriga, S., Bhowmick, B. Deep Insight into Raised Buried Oxide SOI-Fe TFET and It’s Analog/RF and Linearity Performance Parameters. Trans. Electr. Electron. Mater. 24, 589–602 (2023). https://doi.org/10.1007/s42341-023-00480-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00480-6

Keywords

Navigation