Skip to main content
Log in

Enhancing GaN/AlGaN MQW Micro LED Optical and Electrical Performance with a Non-uniform LQB

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, physical device modeling of ultraviolet micro light-emitting diodes (UV-µLEDs) based on GaN/AlGaN multiple quantum wells (MQWs) is presented. We numerically investigated the optical and electrical properties of UV-LEDs with a graded last quantum barrier (LQB). The constant content Aluminium (Al) of the LQB is replaced by a graded Al profile to improve the internal quantum efficiency (IQE) in the active MQWs region. The results show that the internal quantum efficiency (IQE) and radiative recombination rate of UV µLEDs with the last linearly increased Al composition LQB are higher than other samples under 90 A/cm2 current. This composition also contributes to enhanced hole injection efficiency, effective electron confinement, and uniform distribution of carriers in the MQWs caused by the low electrostatic field. As a result, the optical output power is increased 1.94 times, and the spontaneous emission intensity 2.37 times. The simulated results indicate that the LQB AlGaN layer with different compositions of Al modification can mitigate the effect of the effective electron confinement, Auger recombination rate and hole injection, increasing the overlap between electron ditribution profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright Springer Nature, license Number: 5597001450364

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Gagui, H. Meradji, S. Ghemid, Y. Megdoud, B. Zaidi, B. Ul Haq, R. Ahmed, B. Hadjoudja, B. Chouial, A study of the physical properties of GaN, GaP and their mixed ternary alloys for the applications in optoelectronics devices. Bull Mater Sci 46, 63 (2023). https://doi.org/10.1007/s12034-022-02883-2

    Article  CAS  Google Scholar 

  2. J. Sun, H. Sun, X. Yi, X. Yang, T. Liu, X. Wang, X. Zhang, X. Fan, Z. Zhang, Z. Guo, Efficiency enhancement in AlGaN deep ultraviolet light-emitting diodes by adjusting Mg doped staggered barriers. Superlattices Microstruct. 107, 49–55 (2017). https://doi.org/10.1016/j.spmi.2017.03.055

    Article  CAS  Google Scholar 

  3. A.J. Ghazai, S.M. Thahab, H.A. Hassan, Z. Hassan, The effects of quantum wells number and the built-in polarization on the performance of quaternary AlInGaN UV laser diode. Optik (Stuttg). 123, 856–859 (2012). https://doi.org/10.1016/j.ijleo.2011.06.053

    Article  CAS  Google Scholar 

  4. J. Zhang, W. Liu, S. Zhang, Understanding the luminescence characteristics of ultraviolet InGaN/AlGaN multiple quantum wells with different in gradients. Crystals (Basel). 11, 1390 (2021). https://doi.org/10.3390/cryst11111390

    Article  CAS  Google Scholar 

  5. L. Lu, Z. Wan, F. Xu, X. Wang, C. Lv, M. Jiang, Q. Chen, Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Si-doping design of quantum barriers. Superlattices Microstruct. 109, 687–692 (2017). https://doi.org/10.1016/j.spmi.2017.05.054

    Article  CAS  Google Scholar 

  6. G. Yang, J. Chang, J. Wang, Q. Zhang, F. Xie, J. Xue, D. Yan, F. Wang, P. Chen, R. Zhang, Y. Zheng, Performance enhancement of AlGaN-based ultraviolet light-emitting diodes by tailoring polarization in electron blocking layer. Superlattices Microstruct. 83, 1–8 (2015). https://doi.org/10.1016/j.spmi.2015.02.040

    Article  CAS  Google Scholar 

  7. M. Usman, T. Jamil, The effect of p-Doped AlInN Last quantum barrier on carrier concentration of 266 nm light-emitting diodes without electron blocking layer. J Electron Mater. 51, 6222–6227 (2022). https://doi.org/10.1007/s11664-022-09869-0

    Article  CAS  Google Scholar 

  8. O. Saidani, S. Tobbeche, E. Dogheche, B. Alshehri, Numerical study of high-efficient and high-speed In0.1Ga0.9 N/GaN multiple quantum well photodiodes. J Comput Electron. 20, 1729–1738 (2021). https://doi.org/10.1007/s10825-021-01728-1

    Article  CAS  Google Scholar 

  9. S.-J. Chang, Y.-Y. Lin, C.-H. Liu, S. Li, T.-K. Ko, S.-J. Hon, Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure. IEEE J Quantum Electron. 49, 436–442 (2013). https://doi.org/10.1109/JQE.2013.2250919

    Article  CAS  Google Scholar 

  10. H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, Y. Hao, Numerical investigation on the enhanced performance of N-Polar AlGaN-based ultraviolet light-emitting diodes with superlattice p-type doping. IEEE Trans Electron Devices. 66, 478–484 (2019). https://doi.org/10.1109/TED.2018.2878727

    Article  CAS  Google Scholar 

  11. Q. Si, H. Chen, S. Li, S. Lu, J. Kang, Improved characteristics of AlGaN-based deep ultraviolet light-emitting diodes with superlattice p-Type doping. IEEE Photonics J. 9, 1–7 (2017). https://doi.org/10.1109/JPHOT.2017.2699322

    Article  Google Scholar 

  12. Y.A. Yin, N. Wang, G. Fan, Y. Zhang, Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers. Superlattices Microstruct. 76, 149–155 (2014). https://doi.org/10.1016/j.spmi.2014.10.003

    Article  CAS  Google Scholar 

  13. J. Piprek, S. Li, Electron leakage effects on GaN-based light-emitting diodes. Opt Quantum Electron. 42, 89–95 (2010). https://doi.org/10.1007/s11082-011-9437-z

    Article  CAS  Google Scholar 

  14. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl Phys Lett. (2011). https://doi.org/10.1063/1.3570656

    Article  Google Scholar 

  15. H. Yu, Q. Chen, Z. Ren, M. Tian, S. Long, J. Dai, C. Chen, H. Sun, Enhanced performance of an AlGaN-Based deep-ultraviolet LED having graded quantum well structure. IEEE Photonics J. 11, 1–6 (2019). https://doi.org/10.1109/JPHOT.2019.2922280

    Article  Google Scholar 

  16. X. Cai, S. Li, J. Kang, Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers. Superlattices Microstruct. 97, 1–7 (2016). https://doi.org/10.1016/j.spmi.2016.06.002

    Article  CAS  Google Scholar 

  17. W. Guo, F. Xu, Y. Sun, L. Lu, Z. Qin, T. Yu, X. Wang, B. Shen, Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes by inserting single spike barriers. Superlattices Microstruct. 100, 941–946 (2016). https://doi.org/10.1016/j.spmi.2016.10.070

    Article  CAS  Google Scholar 

  18. L. Kuchipudi, Modeling and Analysis of Quantum Well Samples in GaN/InGaN Light Emitting Diodes, PhD thesis, West Virginia University, (2014)

  19. F. Li, L. Wang, G. Zhao, Y. Meng, H. Li, S. Yang, Z. Wang, Performance enhancement of AlGaN-based ultraviolet light-emitting diodes by inserting the last quantum well into electron blocking layer. Superlattices Microstruct. 110, 324–329 (2017). https://doi.org/10.1016/j.spmi.2017.08.009

    Article  CAS  Google Scholar 

  20. M. Zhang, Y. Li, S. Chen, W. Tian, J. Xu, X. Li, Z. Wu, Y. Fang, J. Dai, C. Chen, Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells. Superlattices Microstruct. 75, 63–71 (2014). https://doi.org/10.1016/j.spmi.2014.07.002

    Article  CAS  Google Scholar 

  21. G. Liu, J. Zhang, C.K. Tan, N. Tansu, Efficiency-droop suppression by using large-bandgap algainn thin barrier layers in ingan quantum-well light-emitting diodes. IEEE Photonics J (2013). https://doi.org/10.1109/JPHOT.2013.2255028

    Article  Google Scholar 

  22. G. Tan, A.S. Abu Bakar, C.S. Ooi, O. Al-Zuhairi, Y.H. Wong, W.H. Abd Majid, The effect of ammonia partial pressure on the growth of semipolar (11–22) InGaN/GaN MQWs and LED structures. Mater Sci Eng B 291, 116368 (2023). https://doi.org/10.1016/j.mseb.2023.116368

    Article  CAS  Google Scholar 

  23. R. Li, M. Xu, C. Wang, S. Qu, K. Shi, C. Li, X. Xu, Z. Ji, Emissions of the InGaN/GaN MQW LEDs with the InGaN well layer grown at different temperatures. Superlattices Microstruct. 160, 107090 (2021). https://doi.org/10.1016/j.spmi.2021.107090

    Article  CAS  Google Scholar 

  24. H. Ekinci, V.V. Kuryatkov, C. Forgey, A. Dabiran, R. Jorgenson, S.A. Nikishin, Properties of InGaN/GaN MQW LEDs grown by MOCVD with and without hydrogen carrier gas. Vacuum 148, 168–172 (2018). https://doi.org/10.1016/j.vacuum.2017.11.014

    Article  CAS  Google Scholar 

  25. Y.-H. Hsu, C.-H. Wang, X.-D. Lin, Y.-H. Lin, D.-S. Wuu, R.-H. Horng, Improved electrical properties of micro light-emitting diode displays by ion implantation technology. Discover Nano. 18, 48 (2023). https://doi.org/10.1186/s11671-023-03819-3

    Article  Google Scholar 

  26. SILVACO Atlas User’s Manual, (2004).

  27. M. Meneghini, C. De Santi, A. Tibaldi, M. Vallone, F. Bertazzi, G. Meneghesso, E. Zanoni, M. Goano, Thermal droop in III-nitride based light-emitting diodes: Physical origin and perspectives. J Appl Phys. 127, 211102 (2020). https://doi.org/10.1063/5.0005874

    Article  CAS  Google Scholar 

  28. Y. Li, Wu. Shengchang Chen, Z.W. Tian, Y. Fang, J. Dai, C. Chen, Advantages of AlGaN-Based 310-nm UV light-emitting diodes with al content graded AlGaN electron blocking layers. IEEE Photonics J. 5, 8200309–8200309 (2013). https://doi.org/10.1109/JPHOT.2013.2271718

    Article  CAS  Google Scholar 

  29. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys Rev A (Coll Park). 43, 3161–3164 (1991). https://doi.org/10.1103/PhysRevA.43.3161

    Article  CAS  Google Scholar 

  30. L.-Y. Wang, W.-D. Song, W.-X. Hu, G. Li, X.-J. Luo, H. Wang, J.-K. Xiao, J.-Q. Guo, X.-F. Wang, R. Hao, H.-X. Yi, Q.-B. Wu, S.-T. Li, Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer. Chin Phys B 28, 018503 (2019). https://doi.org/10.1088/1674-1056/28/1/018503

    Article  CAS  Google Scholar 

  31. S.S. Ng, F.K. Yam, Z. Hassan, H.A. Hassan, The Energy Band Gap of AlxGa1-xN Thin Films as a Function of Al-Mole Fraction, In: 2006 IEEE International Conference on Semiconductor Electronics, IEEE, 2006: pp. 933–937. https://doi.org/10.1109/SMELEC.2006.380776.

  32. J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation, 1st edn. (Academic Press, Germany, 2003)

    Google Scholar 

  33. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J Appl Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156

    Article  CAS  Google Scholar 

  34. S.J. Kim, T.G. Kim, Numerical study of enhanced performance in InGaN light-emitting diodes with graded-composition AlGaInN barriers. J Opt Soc Korea. 17, 16–21 (2013). https://doi.org/10.3807/JOSK.2013.17.1.016

    Article  CAS  Google Scholar 

  35. X. Lu, S. Yang, H. Jiang, J. Wu, Monolithic integration of GaN LEDs with vertical driving MOSFETs by selective area growth and band engineering of the p-AlGaN electron blocking layer though TCAD simulation. Semicond Sci Technol. 34, 064002 (2019). https://doi.org/10.1088/1361-6641/ab13e1

    Article  CAS  Google Scholar 

  36. M. Streiff, W. Fichtner, A. Witzig, Vertical-Cavity Surface-Emitting Lasers Single-Mode Control and Self-Heating Effects, in Optoelectronic Devices. ed. by J. Piprek (Springer, New York, 2005)

    Google Scholar 

  37. V. Fiorentini, F. Bernardini, O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl Phys Lett. 80, 1204–1206 (2002). https://doi.org/10.1063/1.1448668

    Article  CAS  Google Scholar 

  38. M.H. Crawford, J. Han, R.J. Shul, M.A. Banas, J.J. Figiel, L. Zhang, Design and performance of nitride-based UV LEDs. MRS Proc. (2000). https://doi.org/10.1557/PROC-622-T3.6.1

    Article  Google Scholar 

  39. M. Huang, T. Lu, Optimization of the active-layer structure for the deep-UV AlGaN light-emitting diodes. IEEE J Quantum Electron. 42, 820–826 (2006). https://doi.org/10.1109/JQE.2006.877217

    Article  CAS  Google Scholar 

  40. S. Adhikari, S. Pal, C. Dhanavantri, Polarization-Doped InGaN Based Blue Light-Emitting Diode with Reduced Efficiency Droop, In: International Conference on Fibre Optics and Photonics, OSA, Washington, D.C., (2012)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouredine Sengouga.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H., Sengouga, N. & Meftah, A. Enhancing GaN/AlGaN MQW Micro LED Optical and Electrical Performance with a Non-uniform LQB. Trans. Electr. Electron. Mater. 24, 469–478 (2023). https://doi.org/10.1007/s42341-023-00467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00467-3

Keywords

Navigation