Skip to main content
Log in

Phase Evolution, Microstructure, and Electrical Resistivity of CaMnO3-CaZrO3 Composites

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The phase evolution, microstructure, and electrical resistivity of (1-x) CaMnO3-(x) CaZrO3 composites were investigated. A mixture of the CaMnO3-type and CaZrO3-type phases with an orthorhombic structure was formed with the compositions of x = 0.25, 0.5, and 0.75. The diffraction peaks of the CaZrO3-type phase and those of the CaMnO3-type one were shifted toward the higher angle and the lower one, respectively, indicating that the substitutional solid solution occurred mutually. All the specimens exhibited dense microstructures except the composition of x = 1.0. The value of the linear shrinkage for the compositions of x = 0.25, 0.50, and 0.75, i.e., the mixture of the CaMnO3-type and CaZrO3-type phases, is higher than that for the single phases, i.e., CaMnO3 and CaZrO3. The composition of x = 0.0, i.e., CaMnO3, showed an electrical resistivity of about 1 Ω·cm. Since CaZrO3 is an insulator, the electrical resistivity of (1-x) CaMnO3-(x) CaZrO3 composites can be controlled from about 1 Ω·cm to infinity by changing the x value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon Press, London, 1969) pp. 3–49. https://doi.org/10.1016/B978-0-08-012744-6.50005-7

  2. A.S. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat. 4, 3 (2000). https://doi.org/10.1007/s100190000062

    Article  CAS  Google Scholar 

  3. S.S. Won, M. Kawahara, H. Kim, J. Lee, C.K. Jeong, A.I. Kingon, S.-H. Kim, A.C.S. Appl, Mater. Interfaces 13, 22047 (2021). https://doi.org/10.1021/acsami.1c03948

    Article  CAS  Google Scholar 

  4. H.-S. Ma, M.-K. Lee, B.-H. Kim, K.-H. Park, J.-J. Park, S.-H. Lee, Y.-G. Jeong, K.-I. Park, C.K. Jeong, G.-J. Lee, Ceram. Int. 47, 27803 (2021). https://doi.org/10.1016/j.ceramint.2021.06.207

    Article  CAS  Google Scholar 

  5. C. Moure, O. Pena, Prog. Solid State Chem. 43, 123 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.09.001

    Article  CAS  Google Scholar 

  6. E.I. Goldyreva, I.A. Leonidov, M.V. Patrakeev, V.L. Kozhevnikov, J. Solid State Electrochem. 17, 3185 (2013). https://doi.org/10.1007/s10008-013-2223-z

    Article  CAS  Google Scholar 

  7. J. Briatico, B. Alascio, R. Allub, A. Butera, A. Caneiro, M.T. Causa, M. Tovar, Phys. Rev. B 53, 14020 (1996). https://doi.org/10.1103/PhysRevB.53.14020

    Article  CAS  Google Scholar 

  8. H. Taguchi, K. Hirota, S. Nishihara, S. Morimoto, K. Takaoka, M. Yoshinaka, O. Yamaguchi, Physica B 367, 188 (2005). https://doi.org/10.1016/j.physb.2005.06.016

    Article  CAS  Google Scholar 

  9. S. Boskovic, J. Dukic, B. Matovic, Lj. Zivkovic, M. Vlajic, and V. Krstic (2008), J. Alloys Compd. 463, 282, https://doi.org/10.1016/j.jallcom.2007.08.083

  10. N.N. Loshkareva, L.V. Nomerovannaya, E.V. Mostovshchikova, A.A. Makhnev, Yu.P. Sukhorukov, N.I. Solin, T.I. Arbuzova, S.V. Naumov, N.V. Kostromitina, A.M. Balbashov, L.N. Rybina, Phys. Rev. B 70, 224406 (2004). https://doi.org/10.1103/PhysRevB.70.224406

    Article  CAS  Google Scholar 

  11. Y. Murano, M. Matsukawa, S. Ohuchi, S. Kobayashi, S. Nimori, R. Suryanarayanan, K. Koyama, N. Kobayashi, Phys. Rev. B 83, 054437 (2011). https://doi.org/10.1103/PhysRevB.83.054437

    Article  CAS  Google Scholar 

  12. J.B. MacChesney, H.J. Williams, J.F. Potter, R.C. Sherwood, Phys. Rev. 164, 779 (1967). https://doi.org/10.1103/PhysRev.164.779

    Article  CAS  Google Scholar 

  13. Neekita, A. Das. I. Dhiman, A.K. Nigam, A.K. Yadav, D. Bhattacharyya, and S.S. Meena (2012), J. Appl. Phys. 112, 123913. https://doi.org/10.1063/1.4770378

  14. J.R. Hellmann, V.S. Stubican, J. Am. Ceram. Soc. 66, 260 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb15710.x

    Article  CAS  Google Scholar 

  15. W.S. Lee, C.Y. Su, Y.C. Lee, S.P. Lin, T. Yang, Jpn. J. Appl. Phys. 45, 5853 (2006). https://doi.org/10.1143/JJAP.45.5853

    Article  CAS  Google Scholar 

  16. B.-H. Kim, W.-J. Lee, G.-Y. Lee, J.-H. Kim, Jpn. J. Appl. Phys. 43, 7583 (2004). https://doi.org/10.1143/JJAP.43.7583

    Article  CAS  Google Scholar 

  17. P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pedzich, J. Eur. Ceram. Soc. 32, 665 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.011

    Article  CAS  Google Scholar 

  18. I.L.V. Rosa, M.C. Oliveira, M. Assis, M. Ferrer, R.S. Andre, E. Longo, M.F.C. Gurgel, Ceram. Int. 41, 3069 (2015). https://doi.org/10.1016/j.ceramint.2014.10.149

    Article  CAS  Google Scholar 

  19. T. Higuchi, S. Yamaguchi, K. Kobayashi, S. Shin, T. Tsukamoto, Solid State Ionics 162–163, 121 (2003). https://doi.org/10.1016/S0167-2738(03)00251-0

    Article  CAS  Google Scholar 

  20. T. Higuchi, T. Tsukamoto, Y. Tezuka, K. Kobayashi, S. Yamaguchi, S. Shin, Jpn. J. Appl. Phys. 39, L133 (2000). https://doi.org/10.1143/JJAP.39.L133

    Article  CAS  Google Scholar 

  21. T. Higuchi, S. Yamaguchi, K. Kobayashi, T. Takeuchi, S. Shin, T. Tsukamoto, Jpn. J. Appl. Phys. 41, L938 (2002). https://doi.org/10.1143/JJAP.41.L938

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Acta Cryst. A32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  23. R.C. Garvie, J. Am. Ceram. Soc. 51, 553 (1968). https://doi.org/10.1111/j.1151-2916.1968.tb13320.x

    Article  CAS  Google Scholar 

  24. V.S. Stubican, S.P. Ray, J. Am. Ceram. Soc. 60, 534 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb14100.x

    Article  CAS  Google Scholar 

  25. T. Nishino, Nippon Kagaku Kaishi 1981, 10 (1981) [in Japanese] https://doi.org/10.1246/nikkashi.1981.1681

  26. S. Kim, S.-O. Yoon, Y.-H. Kim, S.-M. Jeong, H. Park, Ceram. Silik. 61, 209 (2017). https://doi.org/10.13168/cs.2017.0018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, SO., Kim, S., Lee, JS. et al. Phase Evolution, Microstructure, and Electrical Resistivity of CaMnO3-CaZrO3 Composites. Trans. Electr. Electron. Mater. 23, 343–347 (2022). https://doi.org/10.1007/s42341-022-00397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00397-6

Keywords

Navigation