Abstract
The modified structure of BF-BNT (Bi0.5La0.5Fe)0.25(Bi0.5Na0.5Ti)0.75O3) single perovskite is prepared by a conventional solid-state reaction technique. The structural analysis suggests a tetragonal crystal with space group P4bm (JCPDS file No. 01-070-4760). The average crystallite and lattice strains are 87.2 nm and 0.116% respectively. The dielectric study predicts negative temperature coefficient of resistance character while the presence of low dielectric loss makes the materials useful for energy storage devices. The analysis of the modulus study suggests the presence of a non-Debye type of relaxation process while a thermally activated relaxation process is confirmed from the study of ac conductivity. The presence of the depressed semicircular arcs in both Nyquist and Cole–Cole plots confirms the semiconductor nature of the sample. The study of the Raman spectrum confirms the presence of all atomic vibrations. The UV visible study provides the energy bandgap of 1.67 eV, suitable for the different optoelectronic devices.
Similar content being viewed by others
References
F. Jona, G. Shirane, Ferroelectric Crystals (MacMillan, New York, 1962)
A.P. Alivisatos, Semiconductor clusters nanocrystals, and quantum dots. Science 271, 933–937 (1996)
I.V. Solovyev, K. Terakura, Spin canting in three-dimensional perovskite manganites. Phys. Rev. B. 63, 174425–174432 (2001)
R. Migoni, H. Bilz, D. Bauerle, Origin of Raman scattering and ferroelectricity in oxidic perovskite. Phys. Rev. Lett. 37, 1155–1158 (1976)
V. Garcia, S. Fusil, K.S. Bouzehouane, N.D. Mathur, A. Barthelemy, M. Bibes, Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009)
J.C. Loudon, N.D. Mathur, P.A. Midgley, Charge-ordered ferromagnetic phase in La0.5 Ca0.5MnO3. Nature 420, 797–800 (2002)
J.Z. Sun, D.W. Abraham, R.A. Rao, C.B. Eom, Thickness-dependent magneto-transport in ultrathin manganite films. Appl. Phys. Lett. 74, 3017–3019 (1999)
M.N. Rahman, R. Manalert, Grain boundary mobility of BaTiO3 doped with aliovalent cations. J. Eur. Ceram. Soc. 18, 1063–1071 (1998)
A. Biswas, S. Chandra, M.H. Phan, H. Srikanth, Magnetocaloric properties of nanocrystalline LaMnO3: enhancement of refrigerant capacity and relative cooling power. J. Alloys. Compd. 545, 157–161 (2012)
A. Selmi, R. M’nassri, W.C. Koubaa, N.C. Boudjada, A. Cheikhouhou, Influence of transition metal doping (Fe Co, Ni, and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO.3 manganites. Ceram. Int. 41, 10177–10184 (2015)
B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.D. Kim, T.H. Kim, W. Jo, Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907 (1999)
J.-C. Yang, Q. He, P. Yu, Y.-H. The Chu, BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Annu. Rev. Mater. Res. 45, 249–275 (2015)
M. Kumar, S. Shankar, R.K. Kotnala, O. Parkash, Evidence of magneto-electric coupling in BFO–BT solid solutions. J. Alloys Compd. 577, 222–227 (2013)
J.-G. Park, M.D. Le, J. Jeong, S. Lee, Structure and spin dynamics of multiferroic BiFeO3. J. Phys. Condens. Matter. 26, 433202 (2014)
K.Y. Yun, D. Ricinschi, T. Kawashima, M. Noda, M. Okuyama, Giant ferroelectric polarization beyond 150 µC/cm2 in BiFeO3 thin film. Jpn. J. Appl. Phys. 43, L647–L648 (2004)
H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.-W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23, 3403–3407 (2011)
J. Wang, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 80(299), 1719–1722 (2003)
S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol-gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)
T. Wang, T. Xu, S. Gao, S.-H. Song, Effect of Nd and Nb co-doping on the structural, magnetic, and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 43, 4489–4495 (2017)
K. Chakrabarti, K. Das, B. Sarkar, S.K. De, Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J. Appl. Phys. 110, 103905 (2011)
A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFe03. Ceram. Int. 38, 3829–3834 (2012)
Z. Cheng, X. Wang, S. Dou, H. Kimura, K. Ozawa, Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb co-doping. Phys. Rev. B 77, 092101 (2008)
M. Shami, M. Awan, M. Anis-ur-Rehman, Effect of sintering temperature on nanostructured multiferroic BiFeO3 ceramics. Key Eng. Mater. 510, 348–355 (2012)
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)
K. Mishra, A. Satya, A. Bharathi, V. Sivasubramanian, V. Murthy, A. Arora, Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3–PbTiO3. J. Appl. Phys. 110, 123529 (2011)
R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Ferroelectric and ferromagnetic properties of Gd-doped BiFe)-3BaTi)3 solid solution. Mater. Chem. Phys. 119, 539–545 (2010)
R.J.H. Voorhoeve, Advanced Materials in Catalysis (Acadamic Press, London, 1977), p. 129
R.I. Hines, in Atomistic Simulation and Ab-Initio Studies of Polar Solids. Ph.d., Bristol (1997).
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A A32, 751–767 (1976)
S.K. Parida, M.K. Swain, R.K. Bhuyan, B. Kisan, R.N.P. Choudhary, Effect of cerium on structural and dielectric properties of the modified BiFeO3–PbTiO3 ceramics for photovoltaic applications. J. Electron. Mater. 50, 4685–4695 (2021)
S.K. Parida, Studies on structural, dielectric, and optical properties of Cu/W double substituted calcium manganite for solar cells and thermistor applications. Phase Transit. 94, 1033–1052 (2021)
S.K. Parida, Structural, electrical and optical properties of zinc and tungsten modified lead titanate ceramics. SPIN 11, 2150018–2150114 (2021)
P.R. Pansara, P.Y. Raval, N.H. Vasoya, S.N. Dolia, K.B. Modi, Intriguing structural and magnetic properties correlation study on Fe3+ substituted calcium-copper-titanate. Phys Chem. Chem. Phys. 20, 1914–1922 (2018)
P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, S.K. Parida, Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite. J. Mol. Struct. 1226, 129391–129399 (2021)
S.K. Parida, R.N.P. Choudhary, Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite. Phase Transit. 93(10–11), 981–991 (2020)
A. Khlifi, R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic. Eur. Phys. J. Plus 135, 790–794 (2020)
P. Ganga Raju Achary, R.N.P. Choudhary, S.K. Parida, Investigation of structural and dielectric properties in polycrystalline PbMg1/3 Ti1/3W1/3O3 tungsten perovskite. SPIN 10(3), 2050021–2050110 (2020)
Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin film. Phys. Rev. B Condens. Matter Mater. Phys 82, 024102–024107 (2010)
C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, Effects of Cu and Zn Co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28, 35–40 (2008)
W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42, 213–221 (1990)
R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012)
C. Toulouse, D. Amoroso, C. Xin, P. Veber, M.C. Hatnean, G. Balakrishnan, M. Maglione, P. Ghosez, J. Kreisel, M. Guennou, Lattice dynamics and Raman spectrum of BaZrO3 single crystals. Phys. Rev. B 100, 134102–134105 (2019)
A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, B. Sahoo, Effect of the bandgap and the defect states present within bandgap on the non-linear optical absorption behavior of yttrium aluminum iron garnets. Opt. Mater. 108, 110163 (2020)
Acknowledgements
For XRD, the authors would like to extend sincere gratitude to the host Institute.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest as declared by the author.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Parida, S.K. Studies on Structural, Dielectric, and Optical Properties of the Lanthanum Modified BF-BNT Perovskite for the Thermistor and Photovoltaic Applications. Trans. Electr. Electron. Mater. 23, 632–641 (2022). https://doi.org/10.1007/s42341-022-00396-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42341-022-00396-7