Skip to main content
Log in

Design and Investigation of Dual Dielectric Recessed-Gate AlGaN/GaN HEMT as Gas sensor Application

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a highly sensitive Recessed Gate/source/drain AlGaN/GaN HEMT (RG-AlGaN/GaN HEMT) based Carbon Monoxide gas sensors. Many types of Carbon Monoxide (CO) gas sensor have already been demonstrated experimentally. The deeply etched recessed gate based HEMT form highly sensitive 2DEG for small change in gate metal oxide. Copper Oxide and Cerium Oxide are used as a gate electrode in CO gas detection and these metal oxides are reactively sensitive to CO gas molecules. Because of the change in the work function of gate metal oxide due to the presence of gas deposition on it, there is the change in Ioff, Ion, SS and Vth which can be taken as sensitivity parameter for sensing the gas molecules. For a change in work function till 700meV using various steps sizes, RG-AlGaN/GaN HEMT based CO gas sensor shows highly sensitivity with respect to device characteristics parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.B. Tanvir, E. Laubender, O. Yurchenko, G. Urban, Room temperature CO sensing with metal oxide nanoparticles using work function readout. Procedia Eng. 168, 284–288 (2016)

    Article  CAS  Google Scholar 

  2. N.M. Ghazali, M.R. Mahmood, K. Yasui, A.M. Hashim, Electrochemically deposited gallium oxide nanostructures on silicon substrates. Nanoscale Res. Lett. 9(1), 1–7 (2014)

    Google Scholar 

  3. L.T. Ju, S.L. Ju, 2012. Deposition of Ga2O3 thin film for high-temperature oxygen sensing applications. J Ovonic Res, 8, pp.73 – 9

  4. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans. Electron. Devices 53(2), 356–362 (2006)

    Article  CAS  Google Scholar 

  5. R. Ranjan, N. Kashyap, A. Raman, High-performance dual-gate-charge-plasma-AlGaN/GaN MIS-HEMT. Appl. Phys. A 126(3), 1–9 (2020)

    Article  Google Scholar 

  6. T.E. Hsieh, E.Y. Chang, Y.Z. Song, Y.C. Lin, H.C. Wang, S.C. Liu, S. Salahuddin, C.C. Hu, Gate recessed quasi-normally OFF Al 2 O 3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer. IEEE Electron Device Lett. 35(7), 732–734 (2014)

    Article  CAS  Google Scholar 

  7. L.M. Tolbert, Power electronics for distributed energy systems and transmission and distribution applications: Assessing the technical needs for utility applications (No. ORNL/TM-2005/230) (Oak Ridge National Lab.(ORNL), 2005), Oak Ridge, TN (United States)

  8. M. Bhatnagar, B.J. Baliga, Comparison of 6H-SiC, 3 C-SiC, and Si for power devices. IEEE Trans. Electron. Devices 40(3), 645–655 (1993)

    Article  CAS  Google Scholar 

  9. T.P. Chow, High-voltage SiC and GaN power devices. Microelectron. Eng. 83(1), 112–122 (2006)

    Article  CAS  Google Scholar 

  10. A. Sharma, S.J. Lee, Y.J. Jang, J.P. Jung, 2014. SiC based Technology for High Power Electronics and Packaging Applications. J. Microelectron. Packag. Soc, 21(2), p.71

  11. A Surface Potential Model for Tri-Gate Metal Oxide Semiconductor Field Effect Transistor: Analysis below 10 nm Channel Length,“ Engineering Science and Technology, an International Journal (Elsevier), vol. 24, 2021, pp. 879–889

  12. Voltage and Oxide Thickness Dependent Tunneling Current Density and Tunnel Resistivity Model, Application to High-k Material HfO2 Based MOS Devices”. Superlattices and Microstructures (Elsevier) 111, 628–641 (2017)

    Article  Google Scholar 

  13. A New Surface Potential and Drain Current Model of Dual Material Gate Short Channel Metal Oxide Semiconductor Field Effect Transistor in Sub-Threshold Regime, Application to High-k Material HfO2”. J. Nanoelectronics Optoelectron. (American Sci. Publishers) 14, 868–876 (2019)

    Article  Google Scholar 

  14. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron. 39(10), 1409–1422 (1996)

    Article  Google Scholar 

  15. N. Zhang, V. Mehrotra, S. Chandrasekaran, B. Moran, L. Shen, U. Mishra, E. Etzkorn, D. Clarke, 2003, June. Large area GaN HEMT power devices for power electronic applications: switching and temperature characteristics. In IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC’03. (Vol. 1, pp. 233–237). IEEE

  16. I.H. Hwang, S.K. Eom, G.H. Choi, M.J. Kang, J.G. Lee, H.Y. Cha, K.S. Seo, 2018. High-Performance E‐Mode AlGaN/GaN MIS‐HEMT with Dual Gate Insulator Employing SiON and HfON. physica status solidi (a), 215(10), p.1700650

  17. S.C. Hung, C.W. Chen, C.Y. Shieh, G.C. Chi, R. Fan, S.J. Pearton, “High sensitivity carbon monoxide sensors made by zinc oxide modified gated GaN/AlGaN high electron mobility transistors under room temperature”. Applied Physics Letters, 98(22), p.223504, 2011

  18. J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, M. Stutzmann, Gas sensitive GaN/AlGaN-heterostructures. Sens. Actuators B 87(3), 425–430 (2002)

    Article  CAS  Google Scholar 

  19. P. Meriaudeau, C. Naccache, H-ZSM-5 supported Ga2O3 dehydrocyclisation catalysts Infrared spectroscopic evidence of gallium oxide surface mobility. Appl. Catal. 73(1), L13–L18 (1991)

    Article  CAS  Google Scholar 

  20. T. Nicolet, “Introduction to Fourier Transform Infrared Spectrometry”, short report

  21. S.N. Mohammad, A.A. Salvador, H. Morkoc, 1995. Emerging gallium nitride based devices. Proceedings of the IEEE, 83(10), pp.1306–1355

  22. M.A. Khan, G. Simin, S.G. Pytel, A. Monti, E. Santi, J.L. Hudgins, 2005, June. New developments in gallium nitride and the impact on power electronics. In 2005 IEEE 36th Power Electronics Specialists Conference (pp. 15–26). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, A., Chattopadhyay, S.P., Ranjan, R. et al. Design and Investigation of Dual Dielectric Recessed-Gate AlGaN/GaN HEMT as Gas sensor Application. Trans. Electr. Electron. Mater. 23, 618–623 (2022). https://doi.org/10.1007/s42341-022-00391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00391-y

Keywords

Navigation