Skip to main content
Log in

Optical Losses in Glass/ITO(ZnO)/CdS/Cu2ZnSn(SxSe1−x)4 Solar Cells with Different Kesterite Composition

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, optical losses in auxiliary layers of solar cells with the glass/n-ITO (ZnO)/n-CdS/p-Cu2ZnSn(SxSe1− x)4/rear contact structure (where x = 0; 0.30; 0.48; 0.67; 0.82; 1) was determined. The spectral dependences of the light transmittance to the absorbing layers of Cu2ZnSn (SxSe1x)4 were calculated, taking into account the reflection of light from the boundaries of the contacting materials and its absorption in the auxiliary layers of the devices. Modeling the loss of optical energy processes was carried out for the thickness of the window layer dCdS equal to 25 nm, 50 nm, 75 nm, and 100 nm, and the thickness of the front transparent contact dITO(ZnO) = 100 nm and 200 nm. As a result, their maximum efficiencies were determined under illumination conditions of AM1.5G and AM1.5D solar cells, taking into account optical losses. Analysis of the modeling results made it possible to determine the composition of the Cu2ZnSn(SxSe1x)4 solid solution, which is necessary to obtain the maximum efficiency of the solar cells under consideration and optimize the design of the solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Wilson, First-generation solar cells. (BookWearable Solar Cell Systems, 2019), pp 10–12. Doi:https://doi.org/10.1201/9780429399596-3

  2. G.M. Wilson, M. Al-Jassim, W.K. Metzger, S.W. Glunz, P. Verlinden, G. Xiong, L.M. Mansfield, B.J. Stanbery, K. Zhu, Y. Yan, J.J. Berry, A.J. Ptak, F. Dimroth, B.M. Kayes, A.C. Tamboli, R. Peibst, K. Catchpole, M.O. Reese, C.S. Klinga, P. Denholm, M. Morjaria, M.G. Deceglie, J.M. Freeman, M.A. Mikofski, D.C. Jordan, G. Tamizhmani, D.B. Sulas-Kern, J. Phys. D Appl. Phys. (2020). https://doi.org/10.1088/1361-6463/ab9c6a

    Article  Google Scholar 

  3. O. Vigil-Galán, M. Courel, J.A. Andrade-Arvizu, Y. Sánchez, M. Espíndola-Rodríguez, E. Saucedo, D. Seuret-Jiménez, M. Titsworth, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-014-2196-4

    Article  Google Scholar 

  4. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. (2021). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  5. T. Ratz, G. Brammertz, R. Caballero, M. León, J. Phys. Energy (2020). https://doi.org/10.1088/2515-7655/ab281c

    Article  Google Scholar 

  6. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells. (2011). https://doi.org/10.1016/j.solmat.2010.11.028

    Article  Google Scholar 

  7. D. Hwang, B. Ko, D. Jeon, J. Kang, S. Sung, K. Yang, D. Nam, S. Cho, H. Cheong, D. Kim, crossmark. Sol. Energy Mater. Sol. Cells. (2017). https://doi.org/10.1016/j.solmat.2016.11.034

    Article  Google Scholar 

  8. M.G. Gang, S.W. Shin, M.P. Suryawanshi, U.V. Ghorpade, Z. Song, J.S. Jang, J.H. Yun, H. Cheong, Y. Yan, J.H. Kim, J. Phys. Chem. Lett. (2018). https://doi.org/10.1021/acs.jpclett.8b01433

    Article  Google Scholar 

  9. K.J. Yang, S. Kim, S.Y. Kim, K. Ahn, D.H. Son, S.H. Kim, S.J. Lee, Y.I. Kim, S.N. Park, S.J. Sung, D.H. Kim, T. Enkhbat, J.H. Kim, C.W. Jeon, J.K. Kang, Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10890-x

    Article  Google Scholar 

  10. D.K. Sadanand, Dwivedi. Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.09.079

    Article  Google Scholar 

  11. L.A. Kosyachenko, X. Mathew, P.D. Paulson, V.Y. Lytvynenko, O.L. Maslyanchuk, Sol. Energy Mater. Sol. Cells. (2014). https://doi.org/10.1016/j.solmat.2014.07.019

    Article  Google Scholar 

  12. L.A. Kosyachenko, V.Y. Lytvynenko, O.L. Maslyanchuk, Semiconductors (2016). https://doi.org/10.1134/S1063782616040138

    Article  Google Scholar 

  13. T.I. Mykytyuk, V.Y. Roshko, L.A. Kosyachenko, E.V. Grushko, Acta Phys. Pol. A. (2012). https://doi.org/10.12693/APhysPolA.122.1073

    Article  Google Scholar 

  14. L.A. Kosyachenko, X. Mathew, V.Y. Roshko, E.V. Grushko, Sol. Energy Mater. Sol. Cells. (2013). https://doi.org/10.1016/j.solmat.2013.03.003

    Article  Google Scholar 

  15. L.A. Kosyachenko, E.V. Grushko, X. Mathew, Sol. Energy Mater. Sol. Cells. (2012). https://doi.org/10.1016/j.solmat.2011.09.063

    Article  Google Scholar 

  16. L.A. Kosyachenko, Mater. Renew. Sustain. Energy (2013). Doi:https://doi.org/10.1007/s40243-013-0014-1

  17. L.A. Kosyachenko, E.V. Grushko, V.V. Motushchuk, Sol. Energy Mater. Sol. Cells. (2006). https://doi.org/10.1016/j.solmat.2006.02.027

    Article  Google Scholar 

  18. H.A. Mohamed, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4794201

    Article  Google Scholar 

  19. O.A. Dobrozhan, T.O. Berestok, D.I. Kurbatov, A.S. Opanasyuk, N.M. Opanasyuk, V.F. Nefedchenko, (2013). Doi:2304–1862/2013/3(4)04NEA16(5)

  20. O.A. Dobrozhan, A.S. Opanasyuk, V.V. Grynenko, J. Nano-Electron, Phys. 6, 1–8 (2014). https://doi.org/10.1166/jno.2017.21921

    Article  Google Scholar 

  21. O.A. Dobrozhan, P.S. Danylchenko, A.I. Novgorodtsev, A.S. Opanasyuk, J. Nanoelectron. Optoelectron. (2018). https://doi.org/10.1166/jno.2018.2192

    Article  Google Scholar 

  22. NE. Gorji, IEEE Trans. Nanotechnol. (2014). Doi:https://doi.org/10.1109/TNANO.2014.2318057

  23. O.V. Diachenko, A.S. Opanasyuk, D.I. Kurbatov, P.B. Patel, C.J. Panchal, P. Suryavanshi, V.A. Kheraj, J. Nano-Electron. Phys. (2017). https://doi.org/10.21272/jnep.9(4).04002

    Article  Google Scholar 

  24. O.V. Diachenko, O.A. Dobrozhan, A.S. Opanasyuk, M.M. Ivashchenko, T.O. Protasova, D.I. Kurbatov, A. Čerškus, Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.06.063

    Article  Google Scholar 

  25. O.V. Diachenko, O.A. Dobrozhan, A.S. Opanasyuk, D.I. Kurbatov, V.V. Grynenko, S.V. Plotnikov, J. Nano-Electron. Phys. (2019). https://doi.org/10.21272/jnep.11(3).03024

    Article  Google Scholar 

  26. M.J. Taghavi, M. Houshmand, M.H. Zandi, N.E. Gorji, Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.06.031

    Article  Google Scholar 

  27. A. Kumar, A. Kumar Goyal, U. Gupta, N. Gupta, R. Chaujar. Mat. Today Proc. (2020). Doi:https://doi.org/10.1016/j.matpr.2020.02.688

  28. E. Hammarberg, A. Prodi-Schwab, C. Feldmann, J. Col. Int. Sci. (2009). https://doi.org/10.1016/j.jcis.2009.03.010

    Article  Google Scholar 

  29. J. Chang, Z. Lin, M. Lin, C. Zhu, J. Zhang, J. Wu, J. Mat. Chem. (2015). https://doi.org/10.1039/C4TC02257B

    Article  Google Scholar 

  30. K. Ito, Copper zinc tin sulfide-based thin-film solar cells. (2015). Doi:https://doi.org/10.1002/9781118437865

  31. J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloys Compd. (2012). https://doi.org/10.1016/j.jallcom.2011.08.099

    Article  Google Scholar 

  32. A.U. Sheleg, V.G. Hurtavy, A.V. Mudryi, V.D. Zhivulko, M.Y. Valakh, V.A. Yuhimchuk, I.S. Babichuk, H. Xie, E. Saucedo, J. Appl. Spectrosc. (2014). https://doi.org/10.1007/s10812-014-0005-8

    Article  Google Scholar 

  33. Y.P. Wang, S. Levcenco, D.O. Dumcenco, Y.S. Huang, C.H. Ho, K.K. Tiong, Sol. St. Phen. (2012). https://doi.org/10.1016/j.susmat.2018.e00078

    Article  Google Scholar 

  34. S. Zhang, N.D. Pham, T. Tesfamichael, J. Bell, H. Wang, Sustain. Mater. Technol. (2018). https://doi.org/10.1016/j.susmat.2018.e00078

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed under the financial support of the Ministry of Education and Science of Ukraine (0119U100398). This work was also supported by the National Research Foundation of Ukraine (grant number: 0120U104809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kakherskyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakherskyi, S.I., Diachenko, O.V., Opanasyuk, N.M. et al. Optical Losses in Glass/ITO(ZnO)/CdS/Cu2ZnSn(SxSe1−x)4 Solar Cells with Different Kesterite Composition. Trans. Electr. Electron. Mater. 23, 552–562 (2022). https://doi.org/10.1007/s42341-022-00387-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00387-8

Keywords

Navigation