Skip to main content
Log in

Dependence of Structural and Optical Properties of ZnO Thin Films Grown by Sol–Gel Spin-Coating Technique on Solution Molarity

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films were deposited on glass substrates by using sol–gel spin coating technique. Zinc acetate dihydrate and 2-methoxyethanol were used as precursor with different molar concentrations, 0.2 M, 0.3 M and 0.6 M. The effect of precursor concentration on the structural and optical properties, transmission (T), reflection (R), optical bandgap (Eg), Urbach energy (EU), refractive index (n), extinction coefficient (k), single-oscillator energy (E0), dispersion energy (Ed), moments M−1 and M−3, dielectric constant (ε) and optical conductivity (σ), of the ZnO thin films was studied and investigated. Although, the transmittance, slightly, decreased and the reflectance increased, as the molar concentration increased, the measurements showed that all samples have high transparency and low reflectivity in the visible range which make them suitable for solar cells applications. It is also found that, as the molarity increased, the ZnO thin films exhibited lower Eg and EU and higher Ed, M−1 and M−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data of the research are available if the journal request.

References

  1. H.S. Das, R. Das, P.K. Nandi, S. Biring, S.K. Maity, Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications. Appl. Phys. A Mater. Sci. Process. 127(4), 1–7 (2021). https://doi.org/10.1007/s00339-021-04339-6

    Article  CAS  Google Scholar 

  2. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48(5), 458–484 (2010). https://doi.org/10.1016/j.spmi.2010.08.011

    Article  CAS  Google Scholar 

  3. T.H. Seo et al., Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode. Appl. Phys. Lett. 98(25), 666–669 (2011). https://doi.org/10.1063/1.3601462

    Article  CAS  Google Scholar 

  4. Y. Wang et al., Solution-processed ITO thin-film transistors with doping of gallium oxide show high on-off ratios and work at 1 mV drain voltage. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5141140

    Article  Google Scholar 

  5. T.E. Taouririt, A. Meftah, N. Sengouga, M. Adaika, S. Chala, A. Meftah, Effects of high- k gate dielectrics on the electrical performance and reliability of an amorphous indium–tin–zinc–oxide thin film transistor (a-ITZO TFT): an analytical survey. Nanoscale (2019). https://doi.org/10.1039/C9NR03395E

    Article  Google Scholar 

  6. Y.S. Shim et al., Transparent conducting oxide electrodes for novel metal oxide gas sensors. Sens. Actuators B Chem. 160(1), 357–363 (2011). https://doi.org/10.1016/j.snb.2011.07.061

    Article  CAS  Google Scholar 

  7. P.R. Ohodnicki, M. Andio, C. Wang, Optical gas sensing responses in transparent conducting oxides with large free carrier density. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4890011

    Article  Google Scholar 

  8. S. Chala et al., Synthesis and characterization of ZnO thin film for modeling the effect of its defects on ZnO/Cu2O solar cell EQE. J. Nano- Electron. Phys. 13(1), 1–6 (2021). https://doi.org/10.21272/jnep.13(1).01009

    Article  CAS  Google Scholar 

  9. M. García-Carrión et al., Hybrid solar cells with β- and γ- gallium oxide nanoparticles. Mater. Lett. 261, 2–5 (2020). https://doi.org/10.1016/j.matlet.2019.127088

    Article  CAS  Google Scholar 

  10. F. Qin et al., Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. J. Mater. Chem. A 4(36), 14017–14024 (2016). https://doi.org/10.1039/c6ta06657g

    Article  CAS  Google Scholar 

  11. S. Chala, N. Sengouga, F. Yakuphanoglu, Modeling the effect of defects on the performance of an n-CdO/p-Si solar cell. Vacuum 120, 81–88 (2015). https://doi.org/10.1016/j.vacuum.2015.05.019

    Article  CAS  Google Scholar 

  12. A. Mallick, D. Basak, Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs. Prog. Mater. Sci. 96, 86–110 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.004

    Article  CAS  Google Scholar 

  13. T.A. Harriman, Z. Bi, Q.X. Jia, D.A. Lucca, Frequency shifts of the E2high Raman mode due to residual stress in epitaxial ZnO thin films. Appl. Phys. Lett. 103(12), 121904 (2013). https://doi.org/10.1063/1.4821222

    Article  CAS  Google Scholar 

  14. N. Kumar, A. Dubey, B. Bahrami, S. Venkatesan, Q. Qiao, M. Kumar, Origin of high carrier mobility and low residual stress in RF superimposed DC sputtered Al doped ZnO thin film for next generation flexible devices. Appl. Surf. Sci. 436, 477–485 (2018). https://doi.org/10.1016/j.apsusc.2017.11.274

    Article  CAS  Google Scholar 

  15. C.-H. Chu, H.-W. Wu, J.-L. Huang, Effect of annealing temperature and atmosphere on aluminum-doped ZnO/Au/aluminum-doped ZnO thin film properties. Thin Solid Films 605, 121–128 (2016). https://doi.org/10.1016/j.tsf.2015.11.043

    Article  CAS  Google Scholar 

  16. J. Bruncko et al., Electrical and optical properties of thin ZnO shell layers on GaP nanorods grown by pulsed laser deposition. Thin Solid Films 725, 138634 (2021). https://doi.org/10.1016/j.tsf.2021.138634

    Article  CAS  Google Scholar 

  17. Y. Darma, S. Muhammady, Y.N. Hendri, E. Sustini, R. Widita, K. Takase, Tuning the point-defect evolution, optical transitions, and absorption edge of zinc oxide film by thermal exposure during molecular beam epitaxy growth. Mater. Sci. Semicond. Process. 93, 50–58 (2019). https://doi.org/10.1016/j.mssp.2018.12.030

    Article  CAS  Google Scholar 

  18. G. Li, J. Zhang, X. Hou, Effects of excimer laser annealing on electrical properties of ZnO polycrystalline films deposited by sputtering. Microw. Opt. Technol. Lett. 56(4), 906–910 (2014). https://doi.org/10.1002/mop

    Article  Google Scholar 

  19. M. Godlewski et al., ZnO layers grown by atomic layer deposition: a new material for transparent conductive oxide. Thin Solid Films 518(4), 1145–1148 (2009). https://doi.org/10.1016/j.tsf.2009.04.066

    Article  CAS  Google Scholar 

  20. L.V. Podrezova, S. Porro, V. Cauda, M. Fontana, G. Cicero, Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl. Phys. A Mater. Sci. Process. 113(3), 623–632 (2013). https://doi.org/10.1007/s00339-013-7838-5

    Article  CAS  Google Scholar 

  21. G. Sekicek, Z.B.B. Oral, Ca doped ZnO thin films by sol-gel dip coating method. AIP Conf. Proc. 2380(1), 40009 (2021). https://doi.org/10.1063/5.0058237

    Article  CAS  Google Scholar 

  22. N.S. Motlan, J.H. Panggabean, The Effect of Spin Coating Speed on Structural and Optical Properties of ZnO and ZnO/Dye Thin Films Synthesized by Sol-Gel Spin Coating Method. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1819/1/012050

    Article  Google Scholar 

  23. M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results Phys. 7, 651–655 (2017). https://doi.org/10.1016/j.rinp.2016.12.029

    Article  Google Scholar 

  24. R. Amari, B. Deghfel, A. Mahroug, A.A. Mohamad, A. Boukhari, N. Selmi, Effects of Mn doping on the structural, morphological, electronic and optical properties of ZnO thin films by sol-gel spin coating method: an experimental and DFT+U study. Phys. B Condens. Matter (2020). https://doi.org/10.1016/j.physb.2019.411766

    Article  Google Scholar 

  25. A. Ratkovich, R.L. Penn, Zinc oxide nanoparticle growth from homogenous solution: Influence of Zn:OH, water concentration, and surfactant additives. Mater. Res. Bull. 44(5), 993–998 (2009). https://doi.org/10.1016/j.materresbull.2008.11.012

    Article  CAS  Google Scholar 

  26. K. Lin, P. Tsai, Parametric study on preparation and characterization of ZnO: Al films by sol-gel method for solar cells. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 139(1), 81–87 (2007). https://doi.org/10.1016/j.mseb.2007.01.050

    Article  CAS  Google Scholar 

  27. I.B. Mursal, Z. Jalil, Structural and optical properties of zinc oxide (ZnO) based thin films deposited by sol-gel spin coating method. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1116/3/032020

    Article  Google Scholar 

  28. M. Smirnov, C. Baban, G.I. Rusu, Structural and optical characteristics of spin-coated ZnO thin films. Appl. Surf. Sci. 256(8), 2405–2408 (2010). https://doi.org/10.1016/j.apsusc.2009.10.075

    Article  CAS  Google Scholar 

  29. J.G. Lu et al., Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2357638

    Article  Google Scholar 

  30. S. Chala, N. Sengouga, F. Yakuphanoğlu, S. Rahmane, M. Bdirina, İ Karteri, Extraction of ZnO thin film parameters for modeling a ZnO/Si solar cell. Energy (2018). https://doi.org/10.1016/J.ENERGY.2018.09.035

    Article  Google Scholar 

  31. M. Baneto, A. Enesca, Y. Lare, K. Jondo, K. Napo, A. Duta, Effect of precursor concentration on structural, morphological and opto-electric properties of ZnO thin films prepared by spray pyrolysis. Ceram. Int. 40(6), 8397–8404 (2014). https://doi.org/10.1016/j.ceramint.2014.01.048

    Article  CAS  Google Scholar 

  32. M. Salem, Z.Y. Alami, B. Bessais, A. Chahboun, M. Gaidi, Structural and optical properties of ZnO nanoparticles deposited on porous silicon for mc-Si passivation. J. Nanoparticle Res. 17(3), 1–20 (2015). https://doi.org/10.1007/s11051-015-2944-2

    Article  CAS  Google Scholar 

  33. Z.Y. Alami, M. Salem, M. Gaidi, Effect of Zn concentration on structural and optical proprieties of ZNO thin films deposited by spray pyrolysis. Adv. Energy An Int. J. 2(4), 11–24 (2015). https://doi.org/10.5121/aeij.2015.2402

    Article  Google Scholar 

  34. U. Chaitra, D. Kekuda, K.M. Rao, Dependence of solution molarity on structural, optical and electrical properties of spin coated ZnO thin films. J. Mater. Sci. Mater. Electron. 27(7), 7614–7621 (2016). https://doi.org/10.1007/s10854-016-4745-5

    Article  CAS  Google Scholar 

  35. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  36. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. (Amst) 27, 1363–1368 (2005). https://doi.org/10.1016/j.optmat.2004.09.021

    Article  CAS  Google Scholar 

  37. M.R. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. 44, 286–292 (2009). https://doi.org/10.1002/crat.200800326

    Article  CAS  Google Scholar 

  38. S.H. Wemple, M. Didomenico, Theory of the elasto-optic effect in nonmetallic crystals. Phys. Rev. B 1(1), 193–202 (1970). https://doi.org/10.1103/PhysRevB.1.193

    Article  CAS  Google Scholar 

  39. M.A. Omar, Elementary Solid State Physics (Addison-Wesley Publishing Company, NY, 1993)

    Google Scholar 

  40. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, NY, 1979)

    Google Scholar 

Download references

Acknowledgements

Slimane Chala would like to thank the Laboratory of Metallic and Semiconducting Materials (LMSM), University of Biskra, and the Algerian General Directorate of Scientific Research and Technological Development (DGRSDT) for their scientific and academic support.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Chala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

This manuscript has not been published and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chala, S., Bdirina, M., Elbar, M. et al. Dependence of Structural and Optical Properties of ZnO Thin Films Grown by Sol–Gel Spin-Coating Technique on Solution Molarity. Trans. Electr. Electron. Mater. 23, 544–551 (2022). https://doi.org/10.1007/s42341-022-00386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00386-9

Keywords

Navigation