Skip to main content
Log in

Electrical Performance of Amorphous Oxide/Colloidal Quantum Dot/Amorphous Oxide Hybrid Thin Film Transistor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Hybrid-type thin-film transistors were fabricated using amorphous oxide and colloidal quantum dots. To prevent damage to the quantum dots, amorphous SIZO, which can be processed at low temperatures, was deposited by RF sputtering. In the case of a general hybrid type device, it is known that the characteristics of a multilayer material are significantly lower than that of a single material, and this is greatly affected by the interface characteristics between each material. The electrical characteristics of a single SIZO TFT, such as threshold voltage, field-effect mobility, on/off current ratio, and subthreshold slope, have been observed as −0.15 V, 9.54 cm2/Vs, 2.9 × 108, and 0.34 V/dec, respectively while electrical characteristics of hybrid-type OQO TFT were observed as 1.39 V, 9.19 cm2/Vs, 3.9 × 108, and 0.35 V/dec, respectively. As a result, it was confirmed that the electrical characteristics did not change significantly when the single SIZO TFT and the hybrid type OQO TFT have been compared in this experiment. Its electrical properties are mainly driven by the upper and lower a-SIZO layers. a-SIZO which has amorphous properties, can provide excellent surface properties because it can completely cover the spherical QD when it comes into contact with the QD. These results are expected to be applicable to many important applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Konstantatos, J. Clifford, L. Levina, E.G. Sargent, Nat. Photon. 1, 531–534 (2007)

    Article  CAS  Google Scholar 

  2. J.S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Nat. Nanotech. 6, 348–352 (2011)

    Article  CAS  Google Scholar 

  3. K. Kiu, M. Sakurai, M. Aono, Sensors. 10, 8604–8634 (2010)

    Article  Google Scholar 

  4. Y. Wang, J. Yang, W. Ye, D. She, J. Chen, Z. Lv, V.A.L. Roy, H. Li, K. Zhou, Q. Yang, Y. Zhou, S.-T. Han, Adv. Electron. Mater. 6, 1900765 (2019)

    Article  Google Scholar 

  5. J. Huang, J. Lee, J. Vollbrecht, V.V. Brus, A.L. Dixon, D.X. Cao, Z. Zhu, Z. Du, H. Wang, K. Cho, G.C. Bazan, T.-Q. Nguyen, Adv. Mater. 32, 1906027 (2020)

    Article  CAS  Google Scholar 

  6. J. Yao, G. Yang, Nanoscale 12, 454 (2020)

    Article  CAS  Google Scholar 

  7. Q. Xu, L. Meng, K. Sinha, F.I. Chowdhury, J. Hu, X. Wang, ACS Photonics 7, 1297–1303 (2020)

    Article  CAS  Google Scholar 

  8. S. Abbas, J. Kim, Sensors and Actuators A: Physical. 303, 111835 (2020)

  9. M. V. Jarosz, V. J. Porter, B. R. Fisher, M. A. Kastner, M. G. Bawendi, Phys. Rev. B. 70, 195327 (2004)

  10. D. Kufer, T. Lasanta, M. Bernechea, F.H.L. Koppens, ACS Photonics 3, 1324–1330 (2016)

    Article  CAS  Google Scholar 

  11. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, F.H.L. Koppense, Nat. Nanotech. 7, 363–368 (2012)

    Article  CAS  Google Scholar 

  12. T. Nakotte, H. Luo, J. Pietryga, Nanomaterials 10, 172 (2020)

    Article  CAS  Google Scholar 

  13. N. Huo, G. Konstantatos, Adv. Mater. 30, 1801164 (2018)

    Article  Google Scholar 

  14. K.-S. Cho, K. Heo, C.-W. Baik, J.Y. Choi, H. Jeong, S. Hwang, S.Y. Lee, Nat. Commun. 8, 840 (2017)

    Article  Google Scholar 

  15. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  CAS  Google Scholar 

  16. B.H. Lee, K.-S. Cho, D.-Y. Lee, A. Sohn, J.Y. Lee, H. Choo, S. Park, S.-W. Kim, S. Kim, S.Y. Lee, Sci. Rep. 9, 19246 (2019)

    Article  CAS  Google Scholar 

  17. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yeol Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.H., Cho, KS., Kim, S. et al. Electrical Performance of Amorphous Oxide/Colloidal Quantum Dot/Amorphous Oxide Hybrid Thin Film Transistor. Trans. Electr. Electron. Mater. 23, 25–29 (2022). https://doi.org/10.1007/s42341-021-00368-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00368-3

Keywords

Navigation