Skip to main content

The Working Pressure-Dependent Physical Characteristics of InGaN/GaN/Sapphire Thin Film


The working pressure dependency on the vital physical parameters of InGaN thin films obtained with the RFM (Radio Frequency Magnetron) sputter method was investigated in detail here. The electrical conductivity values of our films were bigger than the optical conductivity values, and it was clearly seen that the electrical conductivity parameter was affected by the pressure change. The highest and lowest optical conductivity was obtained at 9 and 8 mTorr pressure respectively. The optical band gap energies of our films have varied non-linearly and this variation in the optical band gap energies have been mainly originated from different Indium compositions in the films. XPS results have proved the film has GaN, InN, In2O3, InNxOy bindings. Structural parameters of the material were found to very close to the theoretical values and are compatible with the theory. In essence, the variation of the significant/useful physical parameters of the thin film with the different applied pressures was deeply studied and discussed.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    M. Reddeppa, T. Chandrakalavathi, B.G. Park, G. Murali, R. Siranjeevi, G. Nagaraju, J.S. Yu, R. Jayalakshmi, S.G. Kim, M.D. Kim, Sens. Actuators B Chem. 307, 127649 (2020).

    Article  CAS  Google Scholar 

  2. 2.

    A. Mistry, Opt. Laser Technol. 124, 105975 (2020).

    Article  CAS  Google Scholar 

  3. 3.

    A. Mantarcı, Appl. Phys. A 127, 469 (2021).

    Article  CAS  Google Scholar 

  4. 4.

    T.B. Eldred, M. Abdelhamid, J.G. Reynolds, N.A. El-Masry, J.M.L. Beau, S.M. Bedair, Appl. Phys. Lett. 116, 102104 (2020).

    Article  CAS  Google Scholar 

  5. 5.

    J. Holguin-Lerma, M. Kong, O. Alkhazragi, X. Sun, T. Khee, B. Ooi, Opt. Lett. 45, 742–745 (2020).

    Article  CAS  Google Scholar 

  6. 6.

    P.G. Mosesa, M. Miao, Q. Yan, C.G.V. Walle, J. Chem. Phys. 134, 8 (2011).

    Article  CAS  Google Scholar 

  7. 7.

    H.P.D. Schenk, M. Leroux, P.D. Mierry, J. Appl. Phys. 88, 1525–1534 (2000).

    Article  CAS  Google Scholar 

  8. 8.

    Z. Yarar, Solid State Commun. 147, 98–102 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    L.M. Zhang, C.X. Li, J.T. Zhao, K.J. Yang, G.F. Zhang, T.S. Wang, C.H. Zhang, Nucl. Instrum. Methods Phys. Res. B 305, 1–4 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    E.A. Evropeitsev, D.R. Kazanov, Y. Robin, A.N. Smirnov, I.A. Eliseyev, V.Y. Davydov, A.A. Toropov, S. Nitta, T.V. Shubina, H. Amano, Sci. Rep. 10, 19048 (2020).

    Article  CAS  Google Scholar 

  11. 11.

    R. Cheriton, S.M. Sadaf, L. Robichaud, J.J. Krich, Z. Mi, K. Hinzer, Commun. Mater. 1, 63 (2020).

    Article  Google Scholar 

  12. 12.

    F. Chen, X. Ji, S.P. Lau, Mater. Sci. Eng. R Rep. 142, 100578 (2020).

    Article  Google Scholar 

  13. 13.

    C. Li, J. Li, M. Xu, Z. Ji, K. Shi, H. Li, Y. Wei, X. Xu, Sci. Rep. 10, 129 (2020).

    Article  CAS  Google Scholar 

  14. 14.

    W.H. Liu, Y. Qu, S.L. Ban, J. Appl. Phys. 122, 115104 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    S. Gökden, R. Tülek, A. Teke, J.H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S.B. Lisesivdin, E. Özbay, Semicond. Sci. Technol. 25, 045024 (2010).

    Article  CAS  Google Scholar 

  16. 16.

    H. Yang, Z. Ma, Y. Jiang, H. Wu, P. Zuo, B. Zhao, H. Jia, H. Chen, Sci. Rep. 7, 43357 (2017).

    Article  Google Scholar 

  17. 17.

    A. Mantarcı, M. Kundakcı, Bull. Mater Sci. 42, 196 (2019).

    Article  CAS  Google Scholar 

  18. 18.

    L.L. Smith, S.W. King, R.J. Nemanich, R.F. Davis, JEM 25, 805–810 (1996).

    Article  CAS  Google Scholar 

  19. 19.

    A. Mantarcı, M. Kundakçi, J. Aust. Ceram. Soc. 56, 905–914 (2020).

    Article  CAS  Google Scholar 

  20. 20.

    G.B. Harris, London Edinburgh Dublin Philos. Mag. J. Sci. 43, 113–123 (1952).

    Article  Google Scholar 

  21. 21.

    C.V. Thompson, R. Carel, Mat. Sci. Eng. B-Adv. 32, 211–219 (1995).

    Article  CAS  Google Scholar 

  22. 22.

    C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245–268 (1990).

    Article  CAS  Google Scholar 

  23. 23.

    J.E. Taylor, J.W. Cahn, JEM 17, 443–445 (1988).

    Article  Google Scholar 

  24. 24.

    A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Acta Mater. 37, 1227–1240 (1989).

    Article  CAS  Google Scholar 

  25. 25.

    E.C. Hernández, M.R. Lopez, M.P. Caro, P.G.M. Gonzalez, A.H. Gómez, A.Y. Gorbatchev, M.L. López, V.H.M. García, J. Cryst. Growth 378, 295–298 (2013).

    Article  CAS  Google Scholar 

  26. 26.

    K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, K. Domen, J. Phys. Chem. B. 109, 20504–20510 (2005).

    Article  CAS  Google Scholar 

  27. 27.

    M. Kumar, T.N. Bhat, M.K. Rajpalke, B. Roul, P. Misra, L.M. Kukreja, N. Sinha, A.T. Kalghatgi, S.B. Krupanidhi, Bull. Mater. Sci. 33, 221–226 (2010).

    Article  CAS  Google Scholar 

  28. 28.

    T.S. Moss, Phys. Status Solidi B 131, 415–427 (1985).

    Article  CAS  Google Scholar 

  29. 29.

    N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Techn. 50, 21–29 (2007).

    Article  CAS  Google Scholar 

  30. 30.

    P. Hervé, L.K.J. Vandamme, Infrared Phys. Techn. 35, 609–615 (1994).

    Article  Google Scholar 

  31. 31.

    V. Kumar and J. Singh, Indian J. Pure Ap. Phy. 48, (2010).

  32. 32.

    Y. Zhu, Z. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. Yu, Q. Lin, Light Sci. Appl. 7, 67 (2018).

    Article  CAS  Google Scholar 

  33. 33.

    M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, Compos. B. Eng. 167, 728–735 (2019).

    Article  CAS  Google Scholar 

Download references


We would like to thank Mus Alparslan University Research Support Department (MUSBAP) for their support. Project No: BAP-20-VMYO-4901-01.

Author information



Corresponding author

Correspondence to Asim Mantarcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 790 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mantarcı, A. The Working Pressure-Dependent Physical Characteristics of InGaN/GaN/Sapphire Thin Film. Trans. Electr. Electron. Mater. 22, 584–592 (2021).

Download citation


  • Nano property
  • InGaN
  • Solid state device
  • Working pressure
  • Optical conductivity
  • Moss model