Skip to main content

The Working Pressure-Dependent Physical Characteristics of InGaN/GaN/Sapphire Thin Film

Abstract

The working pressure dependency on the vital physical parameters of InGaN thin films obtained with the RFM (Radio Frequency Magnetron) sputter method was investigated in detail here. The electrical conductivity values of our films were bigger than the optical conductivity values, and it was clearly seen that the electrical conductivity parameter was affected by the pressure change. The highest and lowest optical conductivity was obtained at 9 and 8 mTorr pressure respectively. The optical band gap energies of our films have varied non-linearly and this variation in the optical band gap energies have been mainly originated from different Indium compositions in the films. XPS results have proved the film has GaN, InN, In2O3, InNxOy bindings. Structural parameters of the material were found to very close to the theoretical values and are compatible with the theory. In essence, the variation of the significant/useful physical parameters of the thin film with the different applied pressures was deeply studied and discussed.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Reddeppa, T. Chandrakalavathi, B.G. Park, G. Murali, R. Siranjeevi, G. Nagaraju, J.S. Yu, R. Jayalakshmi, S.G. Kim, M.D. Kim, Sens. Actuators B Chem. 307, 127649 (2020). https://doi.org/10.1016/j.snb.2019.127649

    Article  CAS  Google Scholar 

  2. 2.

    A. Mistry, Opt. Laser Technol. 124, 105975 (2020). https://doi.org/10.1016/j.optlastec.2019.105975

    Article  CAS  Google Scholar 

  3. 3.

    A. Mantarcı, Appl. Phys. A 127, 469 (2021). https://doi.org/10.1007/s00339-021-04631-5

    Article  CAS  Google Scholar 

  4. 4.

    T.B. Eldred, M. Abdelhamid, J.G. Reynolds, N.A. El-Masry, J.M.L. Beau, S.M. Bedair, Appl. Phys. Lett. 116, 102104 (2020). https://doi.org/10.1063/1.5139269

    Article  CAS  Google Scholar 

  5. 5.

    J. Holguin-Lerma, M. Kong, O. Alkhazragi, X. Sun, T. Khee, B. Ooi, Opt. Lett. 45, 742–745 (2020). https://doi.org/10.1364/OL.385954

    Article  CAS  Google Scholar 

  6. 6.

    P.G. Mosesa, M. Miao, Q. Yan, C.G.V. Walle, J. Chem. Phys. 134, 8 (2011). https://doi.org/10.1063/1.3548872

    Article  CAS  Google Scholar 

  7. 7.

    H.P.D. Schenk, M. Leroux, P.D. Mierry, J. Appl. Phys. 88, 1525–1534 (2000). https://doi.org/10.1063/1.373850

    Article  CAS  Google Scholar 

  8. 8.

    Z. Yarar, Solid State Commun. 147, 98–102 (2008). https://doi.org/10.1016/j.ssc.2008.05.006

    Article  CAS  Google Scholar 

  9. 9.

    L.M. Zhang, C.X. Li, J.T. Zhao, K.J. Yang, G.F. Zhang, T.S. Wang, C.H. Zhang, Nucl. Instrum. Methods Phys. Res. B 305, 1–4 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    E.A. Evropeitsev, D.R. Kazanov, Y. Robin, A.N. Smirnov, I.A. Eliseyev, V.Y. Davydov, A.A. Toropov, S. Nitta, T.V. Shubina, H. Amano, Sci. Rep. 10, 19048 (2020). https://doi.org/10.1038/s41598-020-76042-0

    Article  CAS  Google Scholar 

  11. 11.

    R. Cheriton, S.M. Sadaf, L. Robichaud, J.J. Krich, Z. Mi, K. Hinzer, Commun. Mater. 1, 63 (2020). https://doi.org/10.1038/s43246-020-00054-6

    Article  Google Scholar 

  12. 12.

    F. Chen, X. Ji, S.P. Lau, Mater. Sci. Eng. R Rep. 142, 100578 (2020). https://doi.org/10.1016/j.mser.2020.100578

    Article  Google Scholar 

  13. 13.

    C. Li, J. Li, M. Xu, Z. Ji, K. Shi, H. Li, Y. Wei, X. Xu, Sci. Rep. 10, 129 (2020). https://doi.org/10.1038/s41598-019-57008-3

    Article  CAS  Google Scholar 

  14. 14.

    W.H. Liu, Y. Qu, S.L. Ban, J. Appl. Phys. 122, 115104 (2017). https://doi.org/10.1063/1.5003261

    Article  CAS  Google Scholar 

  15. 15.

    S. Gökden, R. Tülek, A. Teke, J.H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S.B. Lisesivdin, E. Özbay, Semicond. Sci. Technol. 25, 045024 (2010). https://doi.org/10.1088/0268-1242/25/4/045024

    Article  CAS  Google Scholar 

  16. 16.

    H. Yang, Z. Ma, Y. Jiang, H. Wu, P. Zuo, B. Zhao, H. Jia, H. Chen, Sci. Rep. 7, 43357 (2017). https://doi.org/10.1038/srep43357

    Article  Google Scholar 

  17. 17.

    A. Mantarcı, M. Kundakcı, Bull. Mater Sci. 42, 196 (2019). https://doi.org/10.1007/s12034-019-1883-4

    Article  CAS  Google Scholar 

  18. 18.

    L.L. Smith, S.W. King, R.J. Nemanich, R.F. Davis, JEM 25, 805–810 (1996). https://doi.org/10.1007/BF02666640

    Article  CAS  Google Scholar 

  19. 19.

    A. Mantarcı, M. Kundakçi, J. Aust. Ceram. Soc. 56, 905–914 (2020). https://doi.org/10.1007/s41779-019-00420-9

    Article  CAS  Google Scholar 

  20. 20.

    G.B. Harris, London Edinburgh Dublin Philos. Mag. J. Sci. 43, 113–123 (1952). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  21. 21.

    C.V. Thompson, R. Carel, Mat. Sci. Eng. B-Adv. 32, 211–219 (1995). https://doi.org/10.1016/0921-5107(95)03011-5

    Article  CAS  Google Scholar 

  22. 22.

    C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245–268 (1990). https://doi.org/10.1146/annurev.ms.20.080190.001333

    Article  CAS  Google Scholar 

  23. 23.

    J.E. Taylor, J.W. Cahn, JEM 17, 443–445 (1988). https://doi.org/10.1007/BF02652131

    Article  Google Scholar 

  24. 24.

    A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Acta Mater. 37, 1227–1240 (1989). https://doi.org/10.1016/0001-6160(89)90117-X

    Article  CAS  Google Scholar 

  25. 25.

    E.C. Hernández, M.R. Lopez, M.P. Caro, P.G.M. Gonzalez, A.H. Gómez, A.Y. Gorbatchev, M.L. López, V.H.M. García, J. Cryst. Growth 378, 295–298 (2013). https://doi.org/10.1016/j.jcrysgro.2012.12.172

    Article  CAS  Google Scholar 

  26. 26.

    K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, K. Domen, J. Phys. Chem. B. 109, 20504–20510 (2005). https://doi.org/10.1021/jp053499y

    Article  CAS  Google Scholar 

  27. 27.

    M. Kumar, T.N. Bhat, M.K. Rajpalke, B. Roul, P. Misra, L.M. Kukreja, N. Sinha, A.T. Kalghatgi, S.B. Krupanidhi, Bull. Mater. Sci. 33, 221–226 (2010). https://doi.org/10.1007/s12034-010-0034-8

    Article  CAS  Google Scholar 

  28. 28.

    T.S. Moss, Phys. Status Solidi B 131, 415–427 (1985). https://doi.org/10.1002/pssb.2221310202

    Article  CAS  Google Scholar 

  29. 29.

    N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Techn. 50, 21–29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001

    Article  CAS  Google Scholar 

  30. 30.

    P. Hervé, L.K.J. Vandamme, Infrared Phys. Techn. 35, 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  Google Scholar 

  31. 31.

    V. Kumar and J. Singh, Indian J. Pure Ap. Phy. 48, (2010). http://nopr.niscair.res.in/handle/123456789/9962

  32. 32.

    Y. Zhu, Z. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. Yu, Q. Lin, Light Sci. Appl. 7, 67 (2018). https://doi.org/10.1038/s41377-018-0066-1

    Article  CAS  Google Scholar 

  33. 33.

    M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, Compos. B. Eng. 167, 728–735 (2019). https://doi.org/10.1016/j.compositesb.2019.03.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mus Alparslan University Research Support Department (MUSBAP) for their support. Project No: BAP-20-VMYO-4901-01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asim Mantarcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 790 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mantarcı, A. The Working Pressure-Dependent Physical Characteristics of InGaN/GaN/Sapphire Thin Film. Trans. Electr. Electron. Mater. 22, 584–592 (2021). https://doi.org/10.1007/s42341-021-00350-z

Download citation

Keywords

  • Nano property
  • InGaN
  • Solid state device
  • Working pressure
  • Optical conductivity
  • Moss model