Skip to main content
Log in

Analytical Modelling and Simulation Analysis of Junctionless Nanotube (JL NT) MOSFET

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, an analytical model for junctionless nanotube (JL NT) MOSFET has been developed. The analytical model for minimum central potential, threshold voltage and drain current has been developed by using variable separation method. These model expressions are further applied to analyse the Short Channel Effects (SCEs) of JL NT MOSFET. The electrical performance of proposed device has been investigated by varying different process parameters such as silicon nanotube thickness, gate oxide thickness, and gate length. All the results of developed models have been validated by comparing with so obtained simulated results from genius 3D device simulator of VisualTCAD for different device parameters. JL NT MOSFET with appropriate design parameters can be further explored for circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.P. Colinge, C.W. Lee, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu. Junctionless transistors: physics and properties, in Semiconductor-on-Insulator Materials for Nanoelectronics Applications (Springer, Berlin, 2011) pp. 187–200

  2. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’neill, A. Blake, M. White, A.M. Kelleher, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  CAS  Google Scholar 

  3. C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.P. Colinge, Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  4. S.J. Choi, D.I. Moon, S. Kim, J.P. Duarte, Y.K. Choi, Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32(2), 125–127 (2010)

    Article  Google Scholar 

  5. S. Gundapaneni, M. Bajaj, R.K. Pandey, K.V. Murali, S. Ganguly, A. Kottantharayil, Effect of band-to-band tunneling on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012)

    Article  CAS  Google Scholar 

  6. R.T. Doria, M.A. Pavanello, R.D. Trevisoli, M. de Souza, C.W. Lee, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)

    Article  CAS  Google Scholar 

  7. A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani, Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron Devices 60(4), 1342–1348 (2013)

    Article  Google Scholar 

  8. V. Kumari, N. Modi, M. Saxena, M. Gupta, Modeling and simulation of double gate junctionless transistor considering fringing field effects. Solid-State Electron. 107, 20–29 (2015)

    Article  CAS  Google Scholar 

  9. G. Hu, P. Xiang, Z. Ding, R. Liu, L. Wang, T.A. Tang, Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61(3), 688–695 (2014)

    Article  Google Scholar 

  10. T. Holtij, M. Schwarz, A. Kloes, B. Iniguez, Threshold voltage, and 2D potential modeling within short-channel junctionless DG MOSFETs in subthreshold region. Solid-State Electron. 90, 107–115 (2013)

    Article  CAS  Google Scholar 

  11. R. Trevisoli, R. Trevisoli Doria, M. de Souza, M. Antonio Pavanello, Analysis of the leakage current in junctionless nanowire transistors. Appl. Phys. Lett. 103(20), 202103 (2013)

    Article  Google Scholar 

  12. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)

    Article  CAS  Google Scholar 

  13. S. Sahay, M.J. Kumar, Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron Devices 64(3), 1330–1335 (2017)

    Article  Google Scholar 

  14. J. Fan, M. Li, X. Xu, Y. Yang, H. Xuan, R. Huang, Insight into gate-induced drain leakage in silicon nanowire transistors. IEEE Trans. Electron Devices 62(1), 213–219 (2014)

    Google Scholar 

  15. J. Hur, B.H. Lee, M.H. Kang, D.C. Ahn, T. Bang, S.B. Jeon, Y.K. Choi, Comprehensive analysis of gate-induced drain leakage in vertically stacked nanowire FETs: inversion-mode versus junctionless mode. IEEE Electron Device Lett. 37(5), 541–544 (2016)

    Article  CAS  Google Scholar 

  16. H.M. Fahad, M.M. Hussain, Are nanotube architectures more advantageous than nanowire architectures for field effect transistors? Sci. Rep. 2(1), 1–7 (2012)

    Article  Google Scholar 

  17. D. Tekleab, H.H. Tran, J.W. Sleight, D. Chidambarrao, U.S. Patent No. 8,871,576 (U.S. Patent and Trademark Office, Washington, DC, 2014)

  18. A. Kumar, S. Bhushan, P.K. Tiwari, A threshold voltage model of silicon-nanotube-based ultrathin double gate-all-around (DGAA) MOSFETs incorporating quantum confinement effects. IEEE Trans. Nanotechnol. 16(5), 868–875 (2017)

    Article  CAS  Google Scholar 

  19. A. Kumar, S. Bhushan, P.K. Tiwari, Analytical modeling of subthreshold characteristics of ultra-thin double gate-all-around (DGAA) MOSFETs incorporating quantum confinement effects. Superlattices Microstruct. 109, 567–578 (2017)

    Article  CAS  Google Scholar 

  20. A. Kumar, S. Bhushan, P.K. Tiwari, Drain current modelling of double gate-all-around (DGAA) MOSFETs. IET Circuits Devices Syst. 13(4), 519–525 (2019)

    Article  Google Scholar 

  21. S. Sahay, M.J. Kumar, Nanotube junctionless FET: proposal, design, and investigation. IEEE Trans. Electron Devices 64(4), 1851–1856 (2017)

    Article  Google Scholar 

  22. S. Rewari, S. Haldar, V. Nath, S.S. Deswal, R.S. Gupta, Numerical modeling of Subthreshold region of junctionless double surrounding gate MOSFET (JLDSG). Superlattices Microstruct. 90, 8–19 (2016)

    Article  CAS  Google Scholar 

  23. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, R.S. Gupta, Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122(12), 1049 (2016)

    Article  Google Scholar 

  24. H.M. Fahad, C.E. Smith, J.P. Rojas, M.M. Hussain, Silicon nanotube field effect transistor with core–shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett. 11(10), 4393–4399 (2011)

    Article  CAS  Google Scholar 

  25. B. Singh, D. Gola, K. Singh, E. Goel, S. Kumar, S. Jit, Analytical modeling of channel potential and threshold voltage of double-gate junctionless FETs with a vertical Gaussian-like doping profile. IEEE Trans. Electron Devices 63(6), 2299–2305 (2016)

    Article  CAS  Google Scholar 

  26. S. Preethi, N.B. Balamurugan, Analytical modeling of surrounding gate junctionless MOSFET using finite differentiation method. Silicon. 1–11 (2020)

  27. C. Jiang, R. Liang, J. Wang, J. Xu, A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5(5), 057122 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Raj Kumar acknowledges the UGC, INDIA for the financial assistance and UIET (ECE), Panjab University, Chandigarh for providing Lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Bala, S. & Kumar, A. Analytical Modelling and Simulation Analysis of Junctionless Nanotube (JL NT) MOSFET. Trans. Electr. Electron. Mater. 23, 362–370 (2022). https://doi.org/10.1007/s42341-021-00349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00349-6

Keywords

Navigation