Skip to main content

Investigation on the Relaxation Time Response of Metal Capped Amorphous Oxide Si–In–Zn–O Thin Film Transistors


Relaxation time of metal capped amorphous silicon-indium-zinc-oxide (a-SIZO) thin film transistors (TFTs) has been investigated. As increasing the length of metal capping layer, the electrical characteristics improved and threshold voltage (Vth) moved to negative direction from 1.4 to 0.6 V. The fabrication of thin film type inverter was conducted with the SIZO TFT of enhancement mode and 40 µm metal capped SIZO TFT of depletion mode. The voltage transfer curve showed inversion clearly. The relaxation time has been measured to confirm the electrical performance in the case of TFTs, indicating insignificant signal distortion. This result means it is possible to apply to integrated circuits or the next generation memory devices without any significant signal distortion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945–2986 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishii, M. Kakegawa, J. SID. 15, 17–22 (2007)

    CAS  Google Scholar 

  3. 3.

    J.K. Jeong, Semicond. Sci. Technol. 26, 034008 (2011)

    Article  Google Scholar 

  4. 4.

    H. Hosono, M. Yasukawa, H. Kawazoe, J. Non-Cryst, Solids. 203, 334–344 (1996)

    CAS  Google Scholar 

  5. 5.

    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    CAS  Article  Google Scholar 

  6. 6.

    T. Kamiya, K. Nomura, H. Hosono, J. Disp. Technol. 5, 462 (2009)

    CAS  Article  Google Scholar 

  7. 7.

    D. W. Greve, Field Effect Devices and Application: Devices for Portable, Low-power, and Imaging Systems, 1st ed. (Prentice-Hall, Englewood Cliffs, NJ, USA, 1998)

  8. 8.

    D.H. Kim, H.K. Jung, D.H. Kim, S.Y. Lee, Appl. Phys. Lett. 99, 162101 (2011)

    Article  Google Scholar 

  9. 9.

    E. Chong, Y.S. Chun, S.Y. Lee, Appl. Phys. Lett. 97, 102102 (2010)

    Article  Google Scholar 

  10. 10.

    E. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid-State Lett. 14, H96 (2010)

  11. 11.

    P.-B. Shea, J. Kanicki, J. Appl. Phys 98, 014503 (2005)

    Article  Google Scholar 

  12. 12.

    J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid-State Lett. 11(6), H157–H159 (2008)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Yang, J. Yang, T. Meng, M. Qu, Q. Zhang, Influence of channel layer thickness on the stability of amorphous indium zinc oxide thin film transistors. Mater. Lett. 166, 46–50 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    W.-F. Wu, B.-S. Chiou, Thin Solid Films 247, 201 (1994)

    CAS  Article  Google Scholar 

  15. 15.

    P.C. Debnath, S.Y. Lee, Appl. Phys. Lett. 101, 092103 (2012)

    Article  Google Scholar 

  16. 16.

    K.M. Lee, J. Jang, S.-J. Choi, D.M. Kim, K.R. Kim, D.H. Kim, IEEE Trans. Electr. Dev. 62(5), 1504 (2015)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sang Yeol Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y. Investigation on the Relaxation Time Response of Metal Capped Amorphous Oxide Si–In–Zn–O Thin Film Transistors. Trans. Electr. Electron. Mater. 22, 419–423 (2021).

Download citation


  • Amorphous oxide semiconductor
  • a-SIZO
  • Metal capping layer
  • Relaxation time