Skip to main content
Log in

Numerical Studies of Optimising Various Buffer Layers to Enhance the Performance of Tin Sulfide (SnS)-Based Solar Cells

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

SnS based semiconductor absorber materials are an emerging candidate for photovoltaic application. It is earth-abundant and non-toxic elements. In the present work, among different buffer layer such as CdS, ZnS, ZnSe, In2S2, In2S3, Zn(O:S) have been studied to optimize the performance as well as to find out suitable buffer layer for SnS absorber. The simulation is done under the AM.1.5 illumination using SCAPS-1D simulator program. The effect of different parameters such as the effect of thickness of the buffer layer, the absorber layer, the concentration of dopants and the effect of temperature was studied. Using the optimum values of all parameter SnS based solar cell with different buffer layers have been optimized. This study reveals that CdS could be used as a buffer layer for highly efficient solar cell while ZnS can also be used as a buffer layer as it is non-toxic comparable to the CdS buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Bakliwal, S.K. Pandey, Optimal Design and Simulation of High-Efficiency SnS-Based Solar Cell (Springer Singapore, n.d.). https://doi.org/10.1007/978-981-13-1966-2

  2. M. Minbashi, A. Ghobadi, M.H. Ehsani, H. RezagholipourDizaji, N. Memarian, Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520–525 (2018). https://doi.org/10.1016/j.solener.2018.10.058

    Article  CAS  Google Scholar 

  3. S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar et al., SnS thin film solar cells: perspectives and limitations. Coatings 7, 1–12 (2017). https://doi.org/10.3390/coatings7020034

    Article  CAS  Google Scholar 

  4. N. Koteeswara Reddy, M. Devika, E.S.R. Gopal, Review on Tin (II) sulfide (SnS) material: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 40, 359–398 (2015). https://doi.org/10.1080/10408436.2015.1053601

    Article  CAS  Google Scholar 

  5. J.A.A.M. Courel-piedrahita, SnS-based thin film solar cells : perspectives over the last 25 years (2015). https://doi.org/10.1007/s10854-015-3050-z

  6. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1–7 (2014). https://doi.org/10.1002/aenm.201400496

    Article  CAS  Google Scholar 

  7. K.T. Ramakrishna Reddy, N. Koteswara Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041–3046 (2006). https://doi.org/10.1016/j.solmat.2006.06.012

    Article  CAS  Google Scholar 

  8. S.O. Oyedele, B. Aka, Numerical simulation of varied buffer layer of solar cells based on cigs. Model. Numer. Simul. Mater. Sci. 07, 33–45 (2017). https://doi.org/10.4236/mnsms.2017.73003

    Article  CAS  Google Scholar 

  9. Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. (2012). https://doi.org/10.1155/2012/624520

    Article  Google Scholar 

  10. F.A. Jhuma, M.Z. Shaily, M.J. Rashid, Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8, 1–7 (2019). https://doi.org/10.1007/s40243-019-0144-1

    Article  Google Scholar 

  11. M. Minbashi, A. Ghobadi, M.H. Ehsani, H. RezagholipourDizaji, N. Memarian, Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 5(176), 520–525 (2018). https://doi.org/10.1016/j.solener.2018.10.058

    Article  CAS  Google Scholar 

  12. K.H. Ong, R. Agileswari, B. Maniscalco, P. Arnou, C.C. Kumar, J.W. Bowers, M.B. Marsadek, Review on substrate and molybdenum back contact in CIGS thin film solar cell. Int. J. Photoenergy (2018). https://doi.org/10.1155/2018/9106269

    Article  Google Scholar 

  13. I. Repins, S. Glynn, J. Duenow, T.J. Coutts, W.K. Metzger, M.A. Contreras, Required material properties for high-efficiency CIGS modules. Thin Film Sol. Technol. 7409, 74090M (2009). https://doi.org/10.1117/12.828365

    Article  Google Scholar 

  14. M. Buffière, T. Lepetit, S. Khelifi, A.-A. El Mel, Interface engineering in CuInSe 2 solar cells using ammonium sulfidevapors. Sol. RRL 1, 1700067 (2017). https://doi.org/10.1002/solr.201700067

    Article  CAS  Google Scholar 

  15. M.K. Omrani, M. Minbashi, N. Memarian, D.H. Kim, Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid State Electron. 7, 50–57 (2018). https://doi.org/10.1016/j.sse.2017.12.004

    Article  CAS  Google Scholar 

  16. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  17. N. Khoshsirat, N.A. MdYunus, M.N. Hamidon, S. Shafie, N. Amin, Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS. Optik 126, 681–686 (2015). https://doi.org/10.1016/j.ijleo.2015.02.037

    Article  CAS  Google Scholar 

  18. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi Rapid Res. Lett. 9, 28–31 (2015). https://doi.org/10.1002/pssr.201409520

    Article  CAS  Google Scholar 

  19. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12, 143–153 (2004). https://doi.org/10.1002/pip.524

    Article  CAS  Google Scholar 

  20. M. Burgelman, J. Verschraegen, B. Minnaert, J. Marlein, Numerical simulation of thin film solar cells: practical exercises with SCAPS. Numos Workshop. 357–366 (2007)

  21. K. Decock, S. Khelifi, M. Burgelman, Modelling multivalent defects in thin film solar cells. Thin Solid Films 519, 7481–7484 (2011). https://doi.org/10.1016/j.tsf.2010.12.039

    Article  CAS  Google Scholar 

  22. Dwivedi, D. K. Modeling of Photovoltaic Solar Cell Based on CuSbS2 Absorber for the Enhancement of Performance. IEEE Trans on Electron Devices 68, no. 3, 1121–1128 (2021).

  23. M. Haghighi, M. Minbashi, N. Taghavinia, D.H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells. Sol. Energy 167, 165–171 (2018). https://doi.org/10.1016/j.solener.2018.04.010

    Article  CAS  Google Scholar 

  24. V.R. Minnam Reddy, S. Gedi, C. Park, R.W. Miles, R.R. Ramakrishna, Development of sulphurizedSnS thin film solar cells. Curr. Appl. Phys. 15, 588–598 (2015). https://doi.org/10.1016/j.cap.2015.01.022

    Article  Google Scholar 

  25. Y. Kumagai, L.A. Burton, A. Walsh, F. Oba, Electronic structure and defect physics of Tin sulfides: SnS, Sn2S3, and SnS2. Phys. Rev. Appl. (2016). https://doi.org/10.1103/PhysRevApplied.6.014009

    Article  Google Scholar 

  26. K. Sobayel, K.S. Rahman, M.R. Karim, M.O. Aijaz, M.A. Dar, M.A. Shar, H. Misran, N. Amin, Numerical Modeling on perspective buffer layers for tungusten di di-sulfide (WS2) solar cell by SCAPS-1, Chalcogenide Letters 15, 307–315 (2018)

  27. S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique. Phys. B 406, 1143–1148 (2011). https://doi.org/10.1016/j.physb.2010.12.068

    Article  CAS  Google Scholar 

  28. M.M. Ivashchenko, A.S. Opanasyuk, I.P. Buryk, D.V. Kuzmin, Numerical simulation of SnS-based solar cells. J. Nano Electron. Phys. (2018). https://doi.org/10.21272/jnep.10(3).03004

    Article  Google Scholar 

  29. A. Crovetto, O. Hansen, What is the band alignment of Cu2ZnSn(S, Se)4 solar cells? Sol. Energy Mater. Sol. Cells 169, 177–194 (2017). https://doi.org/10.1016/j.solmat.2017.05.008

    Article  CAS  Google Scholar 

  30. B. Hussain, A. Aslam, T.M. Khan, M. Creighton, B. Zohuri, Electron affinity and bandgap optimization of zinc oxide for improved performance of zno/siheterojunction solar cell using PC1D simulations. Electronics (Switzerland). 8, 1–8 (2019). https://doi.org/10.3390/electronics8020238

    Article  CAS  Google Scholar 

  31. D.A.R. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto, D.B. Mitzi, Cd-free buffer layer materials on Cu 2ZnSn(S xSe 1–x) 4: band alignments with ZnO, ZnS, and In 2S 3. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4714737

    Article  Google Scholar 

  32. Sadanand, D.K. Dwivedi, Modeling of CZTSSe solar photovoltaic cell for window layer optimization. Optik 222, 165407 (2020). https://doi.org/10.1016/j.ijleo.2020.165407

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Sadanand, Singh, P.K. et al. Numerical Studies of Optimising Various Buffer Layers to Enhance the Performance of Tin Sulfide (SnS)-Based Solar Cells. Trans. Electr. Electron. Mater. 22, 893–903 (2021). https://doi.org/10.1007/s42341-021-00311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00311-6

Keywords

Navigation