Skip to main content
Log in

Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, studying the effect of adding nanoparticles on the optimized geometrical parameters, electronic and spectroscopic properties of pure (PMMA), (PMMA-Al2O3), (PMMA-ZrO2), (PMMA-Al2O3-Ag) and (PMMA-ZrO2-Ag) nanocomposites were investigated. The electronic and structural properties involved the (energy gap, fermi energy, electrophilic index and chemical potential). The spectral properties included the IR and UV–Visible. The studied nanocomposites were designed by the Gaussian View 0.5 program then relaxed by performing the B3LYP-DFT hybrid functional together with SDD basis sets for nanocomposites) by Gaussian 0.9 package of programs to study and analyze of ground state and spectroscopic properties of structures. The values of energy gap showed that the Eg decreases and Fermi energy EF increases with adding of the nanoparticles to polymer. In general, most of the studied nanocomposites have direct electronic transition from the valence to conduction band with wavelength lies in the range of solar spectrum. Finally, studied nanocomposites can be used in many optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, Appl. Sci. Lett. 2, 68 (2016)

    Google Scholar 

  2. C.V.S. Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)

    Article  CAS  Google Scholar 

  3. A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. (2018). https://doi.org/10.15407/ujpe63.8.754

    Article  Google Scholar 

  4. A. Hashim, A. Hadi, A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sen. Lett. (2017). https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  5. A. Hashim, Q. Hadi, Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  6. K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J. Adv. Phys. (2017). https://doi.org/10.1166/jap.2017.1313

    Article  Google Scholar 

  7. K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Mater. Focus (2016). https://doi.org/10.1166/mat.2016.1371

    Article  Google Scholar 

  8. A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3935

    Article  Google Scholar 

  9. A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. (2018). https://doi.org/10.11591/eei.v7i1.839

    Article  Google Scholar 

  10. A. Hashim, H. Abduljalil, H. Ahmed, Analysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applications, Egypt. J. Chem. (2019). https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  11. M.M. El-Desoky, I.M. Morad, M.H. Wasfy, A.F. Mansour, J. Appl. Phys. 9, 5 (2017)

    Google Scholar 

  12. P. Guggilla, A. Chilvery, R. Powell, Res. Rev.: J. Mat. Sci. 5, 1 (2017)

    Google Scholar 

  13. M. Rashidian, D. Dorranian, J. Theor. Appl. Phys. 8, 121 (2014)

    Article  Google Scholar 

  14. P. Lutsyk, L. Dzura, A. Kutsenko, Y. Vertsimakha, J. Sworakowski, Semi. Phys.: Quant. Elec. Optoelect. 8, 3 (2005)

    Google Scholar 

  15. F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    Google Scholar 

  16. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr. J. Phys. (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  17. H.H. Mahdi, Euro. J. Adv. Eng. Tech Not. 4, 10 (2017)

    Google Scholar 

  18. K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol) /lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. (2019). https://doi.org/10.1007/s12588-019-09228-5

    Article  Google Scholar 

  19. O. Gurler, U.A. Tarim, Act. Phys. Polo. A 130, 1 (2016)

    Google Scholar 

  20. I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv. Environ. Biol. 9(11), 1–11 (2015)

    Google Scholar 

  21. S. Agarwal, Y.K. Saraswat, V.K. Saraswat, Open. Phys. J. 3, 63–72 (2016)

    Google Scholar 

  22. A. Hashim, M.A. Habeeb, Synthesis and Characterization of Polymer Blend-CoFe2O4 Nanoparticles as a Humidity Sensors For Different Temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  23. F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharm. Phytopharmacol. Res. 8(1), 46–56 (2018)

    CAS  Google Scholar 

  24. N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1538

    Article  Google Scholar 

  25. S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA-LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  26. A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017). https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  27. J. Cao, J.W. Xie, X. Zhang, J. Zhou, J.W. Yuan, C.G. Jhun, J. Nanoelectron. Optoelectron. 11, 56 (2016)

    Article  CAS  Google Scholar 

  28. M.C. George, M.A. Rodriguez, M.S. Kent, G.L. Brennecka, P.E. Hopkins, J. Heat Transf. 138, 024505 (2015)

    Article  CAS  Google Scholar 

  29. H. Mortazavian, C.J. Fennel, F.D. Blum, Macromolecules 49, 4211 (2016)

    Article  CAS  Google Scholar 

  30. S. Jiang, Y. Zhu, Y. Hu, G. Chen, X. Shi, X. Qian, Polym. Adv. Technol. 27, 266 (2016)

    Article  CAS  Google Scholar 

  31. I. Al-Saidi, F. Sadik, Adv. Mat. Phys. Chem. 6, 120 (2016)

    Article  CAS  Google Scholar 

  32. S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays, M.G. Kuzyk, J. Chem. Phys. 144, 114902 (2016)

    Article  CAS  Google Scholar 

  33. M. Rashidian, D. Dorranian, J. Theor, Appl. Phys. 8, 121 (2014)

    Google Scholar 

  34. T.J. Holmquist, J. Bradley, A. Dwivedi, D. Casem, Eur. Phys. J. 225, 343 (2016)

    CAS  Google Scholar 

  35. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)

    Article  Google Scholar 

  36. W. Kohn, L.J. Sham, Phys. Rev. A 140, A1133 (1965)

    Article  Google Scholar 

  37. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

    Google Scholar 

  38. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  39. U. Ali, K.J.B.A. Karim, N.A. Buang, Polym. Rev. 55, 678–705 (2015)

    Article  CAS  Google Scholar 

  40. B. Cheng, J. Zhao, L. Xiao, Q. Cai, R. Guo, Y. Xiao, S. Lei, Sci. Rep. 5, 17859 (2015)

    Article  CAS  Google Scholar 

  41. D.H. Lee, J.M. Kim, K.T. Lim, H.J. Cho, J.H. Bang, Y.S. Kim, Electron. Matt. Lett. 12, 276 (2016)

    Article  CAS  Google Scholar 

  42. J. Jian, H. Chang, A. Vena, B. Sorli, Microsyst. Technol. 6(23), 1719–1725 (2015)

    Google Scholar 

  43. L. Lei, Y. Sun, C. Ai, J. Lu, D. Wen, X. Bai, Nanoscale Res. Lett. 10, 1 (2015)

    Article  CAS  Google Scholar 

  44. T. Kawauchi, J. Kumaki, A. Kitaura, K. Okoshi, H. Kusanagi, K. Kobayashi, T. Sugai, H. Shinohara, E. Yashima, Angew. Chem. Int. Ed. 47, 515 (2008)

    Article  CAS  Google Scholar 

  45. P.S. Hariharan, N. Subhashini, J. Vasanthalakshmi, S.P. Anthony, J. Fluoresc. 26, 703 (2008)

    Article  CAS  Google Scholar 

  46. O. Solomeshch, N. Tessler, APL Mater. 4, 040702 (2016)

    Article  CAS  Google Scholar 

  47. M. Charbonneau, R. Tiron, J. Buckley, M. Py, J. Barnes, S. Derrough, C. Constancias, C. Licitra, C. Sourd, G. Ghibaudo, B.D. Salvo, MRS Proc. 1250, G04 (2010)

    Article  CAS  Google Scholar 

  48. Y. Du, B. Chen, K. Liu, X. Zhao, Z. Wang, H. Lin, Opt. Eng. 53, 057102 (2014)

    Article  CAS  Google Scholar 

  49. Y. Kalachyova, O. Lyutakov, V. Prajzler, J. Tuma, J. Siegel, V. Švorčík, Polym. Compos. 35, 665 (2014)

    Article  CAS  Google Scholar 

  50. Z. Zabihi, H. Araghi, Synth. Met. 217, 87 (2016)

    Article  CAS  Google Scholar 

  51. M.F.H. Al-Kadhemy, A.A. Saeed, Caspian. J. Appl. Sci. Res. 1, 159 (2012)

    Google Scholar 

  52. V. Sahni, Quantal Density Functional Theory II: Approximation Methods and Applications (Springer-Verlag, Berlin, 2010).

    Google Scholar 

  53. N. Ira Levine, Quantum Chemistry, 6th edn. (Pearson Education Inc, Upper Saddle River, NJ, 2009).

    Google Scholar 

  54. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd edn. (Wiley-VCH Verlag GmbH, Weinheim, 2001).

    Book  Google Scholar 

  55. B.K. Lipkowitz, R. Larter, R.T. Cundari, D.B. Boyd, Reviews in Computational Chemistry, vol. 21 (Wiley, Hoboken, NJ, 2005).

    Book  Google Scholar 

  56. E. Jeffrey, R. Reimers, Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology (The University of Sydney, Camperdown, 2006).

    Google Scholar 

  57. C.D. Sherrill, Introduction to Electronic Structure Theory (Georgia Institute of Technology, Atlanta, GA, 2002).

    Google Scholar 

  58. H.F. Hameka, Quantum Mechanics (Library of Congress, Washington, DC, 2004).

    Book  Google Scholar 

  59. M. Bendikov, B. Solouki, N. Auner, Y. Apeloig, Ionization potentials of silenes (R2Si=CR2). Experiment and theory. Organometallics 21, 1349–1354 (2002)

    Article  CAS  Google Scholar 

  60. M. Kassaee, D. Keffer, W. Steele, J. Mol. Struct. Theochem. 802, 23 (2007)

    Article  CAS  Google Scholar 

  61. J.W. Ochterski, Geometry Optimizations in Gaussian (Gaussian Incorporation, Wallingford, CT, 1999).

    Google Scholar 

  62. A. Hinchliffe, Molecular Modeling for Beginners (Wiley, Manchester, 2003).

    Google Scholar 

  63. Y.Z. Truhlar, Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. 109, 5656–5667 (2005)

    Article  CAS  Google Scholar 

  64. H.B. Hassan, A study of the electronic structure of germanabenzene molecules. M.Sc. Thesis, University of Babylon, College of Science, Department of Physics (2011).

  65. M. Lee, Identifying an Unknown Compound by Infrared Spectroscopy (Chemical Education Resources Inc, Pennsylvania, 1997).

    Google Scholar 

  66. R. Gaudoin, W.M.C. Foulkes, CMTH Group, Ab initio calculations of the cohesive energy and the bulk modulus of aluminium. J. Phys.: Condens. Matter 14(38), 8787 (2008)

    Google Scholar 

  67. P. Tronc, Medium-range order and cohesive energy in GexSe1x glasses. J. Phys. Fr. 51, 675–688 (1990)

    Article  CAS  Google Scholar 

  68. M. Weinert, E. Wimmer, A.J. Freeman, Materials design application note. Phys. Rev. 26, 1–6 (2008)

    Google Scholar 

  69. M.A. Abdulsattar, Size effects of semiempirical large unit cell method in comparison with nanoclusters properties of diamond-structured covalent semiconductors. Phys. E. 41, 91679–91688 (2009)

    Article  CAS  Google Scholar 

  70. H.W. Hugosson, A Theoretical Treatise on the Electronic Structure of Designer Hard Materials (Literature Publishes, Wilhelm, 2001).

    Google Scholar 

  71. H. Angham, H. Ahmed, M.A. Hayder, Novel (PMMA-ZrO2-Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industries. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/01782019

    Article  Google Scholar 

  72. H. Angham, H. Ahmed, M.A. Hayder, Novel (PMMA-Al2O3-Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industries. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/04782019

    Article  Google Scholar 

  73. H. Angham, H. Ahmed, M.A. Hayder, Analysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  74. H. Ahmed, H. Ahmed, M.A. Hayder, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application, Egypt. J. Chem. 62(4), 1167–1176 (2019). https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  75. A. Hind, M.A. Hayder, H. Ahmed, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  76. F. Lin, Preparation and characterization of polymer TiO2nanocomposites via in-situ polymerization. Master’s thesis, University of Waterloo (2006).

  77. A. Hashim, Y. Al-Khafaji, A. Hadi, Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  78. A. Hadi, A. Hashim, Y. Al-Khafaji, Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans. Electr. Electron. Mater. (2020). https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  79. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  80. A. Hashim, E. Structural, Optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01528-3

    Article  Google Scholar 

  81. A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazim, A., Abduljalil, H.M. & Hashim, A. Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Trans. Electr. Electron. Mater. 22, 851–868 (2021). https://doi.org/10.1007/s42341-021-00308-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00308-1

Keywords

Navigation