Skip to main content

Assessment of Meta-Heuristic and Classical Methods for GMPPT of PV System

Abstract

Numerous global peak searching mechanisms have been proposed to solve the problem of energy loss due to partial shading of solar photovoltaic (PV) plants but still there is a great need for an efficient and fast global maximum power point tracker (GMPPT). A detailed review of GMPPT based on various meta-heuristic and classical methods along with the basics of partial shading phenomenon, proper positioning of the PV panels, distributed MPPT, Field MPPT etc. will be of great help to the researchers. Till date, it looks like that not a single literature has covered these issues at a single place and thus, this article fills this gap by providing a detailed assessment, tabulated gist of the various GMPPT along with the basics of key issues related to partial shading of PV plants. Various classical and bio-inspired meta-heuristic based GMPPT methods have been compared in this literature. It is expected that this paper will prove to be a valuable asset and a complete reference for the academicians and professionals for further research and proper selection of a GMPPT technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    B. Subudhi, R. Pradhan, A comparative study on maximum power point tracking techniques for photovoltaic power systems. Sustain. Energy, IEEE Trans. 4(1), 89–98 (2013)

    Google Scholar 

  2. 2.

    D. Verma, S. Nema, A.M. Shandilya, S.K. Dash, Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems. Renew. Sustain. Energy Rev. 54, 1018–1034 (2016)

    Google Scholar 

  3. 3.

    Z. Salam, J. Ahmed, B.S. Merugu, The application of soft computing methods for MPPT of PV system: a technological and status review. Appl. Energy 107, 135–148 (2013)

    Google Scholar 

  4. 4.

    M.A. Husain, A. Jain, A. Tariq, A novel fast mutable duty (FMD) MPPT technique for solar PV system with reduced searching area. J. Renew. Sustain. Energy 8(5), 054703 (2016)

    Google Scholar 

  5. 5.

    A. Reza Reisi, M. Hassan Moradi, S. Jamasb, Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew. Sustain. Energy Rev. 19, 433–443 (2013)

    Google Scholar 

  6. 6.

    M. Aslam, A. Tariq, S. Hameed, A.J. Bin, M. Saad, Science direct comparative assessment of maximum power point tracking procedures for photovoltaic systems. Green Energy Envirn. 2, 5–17 (2017)

    Google Scholar 

  7. 7.

    C.R. Sullivan, J.J. Awerbuch, A.M. Latham, Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading. IEEE Trans. Power Electron. 28(2), 740–747 (2013)

    Google Scholar 

  8. 8.

    S. Sarkar, M.M. Rahman, A novel method for optimizing power efficiency of a solar photovoltaic device. Trans. Electr. Electron. Mater. 1, 3 (2020)

    Google Scholar 

  9. 9.

    A. Ilyas, M. Ayyub, M.R. Khan, M.A. Husain, A. Jain, Hardware implementation of perturb and observe maximum power point tracking algorithm for solar photovoltaic system. Trans. Electr. Electron. Mater. 19(3), 222–229 (2018)

    Google Scholar 

  10. 10.

    E. Karatepe, T. Hiyama, M. Boztepe, M. Çolak, Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions. Energy Convers. Manag. 49(8), 2307–2316 (2008)

    CAS  Google Scholar 

  11. 11.

    F. Martínez-Moreno, J. Muñoz, E. Lorenzo, Experimental model to estimate shading losses on PV arrays. Sol. Energy Mater. Sol. Cells 94(12), 2298–2303 (2010)

    Google Scholar 

  12. 12.

    S. K. Varshney, Z. A. Khan, M. A. Husain, A. Tariq, A comparative study and investigation of different diode models incorporating the partial shading effects. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 3145–3150 (2016)

  13. 13.

    K. Sun, M. Cheon, Photovoltaic power generation system utilizing temporary error compensation and photovoltaic array failure detection. Trans. Electr. Electron. Mater. 20(3), 233–239 (2019)

    Google Scholar 

  14. 14.

    B. Lamri, A. Abderrezak, H. Razem, N. Kahoul, Shading and Diode Fault Effects on PV Array Performances. Trans. Electr. Electron. Mater. 19(2), 75–83 (2018)

    Google Scholar 

  15. 15.

    M.A. Husain, M.F. Jalil, M.T.S. Beg, M. Naseem, A. Tariq, “Modeling and study of a standalone PV system using MATLAB/SIMULINK. i-manager’s J. Electr. Eng. 5(4), 30–35 (2012)

    Google Scholar 

  16. 16.

    G. R. Walker, Evaluating MPPT converter topologies using a MATLAB PV model. AUPEC 2000 Innov. Secur. Power, (2000)

  17. 17.

    M.C. Alonso-Garcia, J.M. Ruiz, F. Chenlo, Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module. Sol. Energy Mater. Sol. Cells 90(3), 329–340 (2006)

    CAS  Google Scholar 

  18. 18.

    H. Kawamura et al., Simulation of I-V characteristics of a PV module with shaded PV cells. Sol. Energy Mater. Sol. Cells 75(3–4), 613–621 (2003)

    CAS  Google Scholar 

  19. 19.

    A.K.S.N.H. Faridi, M.A. Husain, A. Tariq, MATLAB based modeling of a PV array and its comparative study with acualsystem. IJEET 5, 19–27 (2014)

    Google Scholar 

  20. 20.

    P. Zhang, B. Ying Zhou, Research on general model and parameter characteristics of photovoltaic array. Trans. Electr. Electron. Mater. 1, 3 (2020)

    Google Scholar 

  21. 21.

    T. Shimizu, M. Hirakata, T. Kamezawa, H. Watanabe, Generation control circuit for photovoltaic modules. IEEE Trans. Power Electron. 16(3), 293–300 (2001)

    Google Scholar 

  22. 22.

    M.A. Husain, A. Jain, A. Tariq, A. Iqbal, Fast and precise global maximum power point tracking techniques for photovoltaic system. IET Renew. Power Gener. 13, 2569–2579 (2019)

    Google Scholar 

  23. 23.

    K. Ishaque, Z. Salam, H. Theri, Syafaruddin, Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simul. Model. Pract. Theory, 19(7),1613–1626 (2011)

  24. 24.

    M.A. Husain, A. Tariq, Modeling of a standalone Wind-PV Hybrid generation system using MATLAB/SIMULINK and its performance analysis. Int. J. Sci. Eng. Res. 4(11), 1805 (2013)

    Google Scholar 

  25. 25.

    L. Liu, X. Meng, C. Liu, A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renew. Sustain. Energy Rev. 53, 1500–1507 (2016)

    Google Scholar 

  26. 26.

    N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487–2742: CRC Press, (2017)

  27. 27.

    G. Petrone, G. Spagnuolo, M. Vitelli, An analog technique for distributed MPPT PV applications. IEEE Trans. Ind. Electron. 59(12), 4713–4722 (2012)

    Google Scholar 

  28. 28.

    D. La Manna, V. Li Vigni, E. Riva Sanseverino, V. Di Dio, P. Romano, Reconfigurable electrical interconnection strategies for photovoltaic arrays: a review. Renew. Sustain. Energy Rev. 33, 412–426 (2014)

    Google Scholar 

  29. 29.

    M. Jazayeri, S. Uysal, and K. Jazayeri, A comparative study on different photovoltaic array topologies under partial shading conditions. In: 2014 IEEE PES T&D Conf. Expo., 1–5 (2014)

  30. 30.

    A. Bidram, A. Davoudi, R.S. Balog, Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J. Photovolt. 2(4), 532–546 (2012)

    Google Scholar 

  31. 31.

    G. Spagnuolo, E. Franco, J.D. Bastidas-Rodriguez, C.A. Ramos-Paja, G. Petrone, Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electron. 7(6), 1396–1413 (2014)

    Google Scholar 

  32. 32.

    J. Zhang, K. Ding, R. Mei, Y. Cai, Global maximum power point tracking method based on sorting particle swarm optimizer. Int. J. Green Energy 15(13), 821–836 (2018)

    Google Scholar 

  33. 33.

    S.R. Pendem, S. Mikkili, Modeling, simulation, and performance analysis of PV array configurations (series, series-parallel, bridge-linked, and honey-comb) to harvest maximum power under various Partial Shading Conditions. Int. J. Green Energy 15(13), 795–812 (2018)

    CAS  Google Scholar 

  34. 34.

    H. Patel, V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans. Ind. Electron. 55(4), 1689–1698 (2008)

    Google Scholar 

  35. 35.

    G. Carannante, C. Fraddanno, M. Pagano, L. Piegari, Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans. Ind. Electron. 56(11), 4374–4380 (2009)

    Google Scholar 

  36. 36.

    E. Koutroulis, F. Blaabjerg, A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012)

    Google Scholar 

  37. 37.

    M.A. Husain, A. Tariq, Transient analysis and selection of perturbation parameters for PV-MPPT implementation. Int. J. Ambient Energy 41(10), 1176–1182 (2020)

    Google Scholar 

  38. 38.

    K. Javed, H. Ashfaq, R. Singh, A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int. J. Green Energy 17(1), 48–61 (2020)

    Google Scholar 

  39. 39.

    T.D. Mai, S. De Breucker, K. Baert, J. Driesen, Reconfigurable emulator for photovoltaic modules under static partial shading conditions. Sol. Energy 141, 256–265 (2017)

    Google Scholar 

  40. 40.

    M.N. Bhukya, V.R. Kota, A quick and effective MPPT scheme for solar power generation during dynamic weather and partial shaded conditions. Eng. Sci. Technol. Int. J. 22(3), 869–884 (2019)

    Google Scholar 

  41. 41.

    K. Ishaque, Z. Salam, A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew. Sustain. Energy Rev. 19, 475–488 (2013)

    Google Scholar 

  42. 42.

    K. Kobayashi, I. Takano, Y. Sawada, A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Sol. Energy Mater. Sol. Cells 90(18–19), 2975–2988 (2006)

    CAS  Google Scholar 

  43. 43.

    Y.H. Ji, D.Y. Jung, J.G. Kim, J.H. Kim, T.W. Lee, C.Y. Won, A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 26(4), 1001–1009 (2011)

    Google Scholar 

  44. 44.

    L. Liu, C. Liu, J. Wang, Y. Kong, Simulation and hardware implementation of a hill-climbing modified fuzzy-logic for maximum power point tracking with direct control method using boost converter. J. Vib. Control 21(2), 335–342 (2015)

    Google Scholar 

  45. 45.

    R. Boukenoui, H. Salhi, R. Bradai, A. Mellit, A new intelligent MPPT method for stand-alone photovoltaic systems operating under fast transient variations of shading patterns. Sol. Energy 124, 124–142 (2016)

    Google Scholar 

  46. 46.

    K. Punitha, D. Devaraj, S. Sakthivel, Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62, 330–340 (2013)

    Google Scholar 

  47. 47.

    R. Guruambeth, R. Ramabadran, Fuzzy logic controller for partial shaded photovoltaic array fed modular multilevel converter. IET Power Electron. 9(8), 1694–1702 (2016)

    Google Scholar 

  48. 48.

    S. Subiyanto, A. Mohamed, M.A. Hannan, Intelligent maximum power point tracking for PV system using Hopfield neural network optimized fuzzy logic controller. Energy Build. 51, 29–38 (2012)

    Google Scholar 

  49. 49.

    P. Veeramanikandan, S. Selvaperumal, Investigation of different MPPT techniques based on fuzzy logic controller for multilevel DC link inverter to solve the partial shading. Soft Comput. 1–12 (2020)

  50. 50.

    C.H. Hussaian Basha, C. Rani, Performance analysis of MPPT Techniques for dynamic irradiation condition of Solar PV. Int. J. Fuzzy Syst. 22(8), 2577–2598 (2020)

    Google Scholar 

  51. 51.

    K. Punitha, D. Devaraj, S. Sakthivel, Development and analysis of adaptive fuzzy controllers for photovoltaic system under varying atmospheric and partial shading condition. Appl. Soft Comput. J. 13(11), 4320–4332 (2013)

    Google Scholar 

  52. 52.

    TH Hiyama, Syafaruddin, E. Karatepe, Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. Renew. Power Gener. IET, 3(2), 239–253 (2009)

  53. 53.

    P. Kofinas, A.I. Dounis, G. Papadakis, M.N. Assimakopoulos, An Intelligent MPPT controller based on direct neural control for partially shaded PV system. Energy Build. 90(2015), 51–64 (2015)

    Google Scholar 

  54. 54.

    N.A. Ahmed, M. Miyatake, A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electr. Power Syst. Res. 78(5), 777–784 (2008)

    Google Scholar 

  55. 55.

    S. Daraban, D. Petreus, C. Morel, A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading. In: IECON Proc. (Industrial Electron. Conf., 1490–1495 (2013)

  56. 56.

    R. Ramaprabha, B.L. Mathur, Genetic algorithm based maximum power point tracking for partially shaded solar photovoltaic array. Int. J. Res. Rev. Inform. Sci (IJRRIS) 2(1), 161–163 (2012)

    Google Scholar 

  57. 57.

    T. Sudhakar Babu, N. Rajasekar, K. Sangeetha, Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition. Appl. Soft Comput. J. 34, 613–624 (2015)

    Google Scholar 

  58. 58.

    K. Ishaque, Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans. Ind. Electron. 60(8), 1–1 (2012)

    Google Scholar 

  59. 59.

    K. Ishaque, Z. Salam, M. Amjad, S. Mekhilef, An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 27(8), 3627–3638 (2012)

    Google Scholar 

  60. 60.

    N. Rajasekar et al., Application of modified particle swarm optimization for maximum power point tracking under partial shading condition. Energy Procedia 61, 2633–2639 (2014)

    Google Scholar 

  61. 61.

    A. F. Minai, H. Malik, Metaheuristics paradigms for renewable energy systems: advances in optimization algorithms. In: Studies in Computational Intelligence, vol. 916, Springer Science and Business Media Deutschland GmbH, 35–61 (2021)

  62. 62.

    H. Renaudineau et al., A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans. Ind. Electron. 62(2), 1047–1058 (2015)

    Google Scholar 

  63. 63.

    J. Ahmed, Z. Salam, A soft computing MPPT for PV system based on Cuckoo Search algorithm. Int. Conf. Power Eng. Energy Electr. Drives, 558–562 (2013)

  64. 64.

    R. Rajabioun, Cuckoo optimization algorithm. Appl. Soft Comput. J. 11(8), 5508–5518 (2011)

    Google Scholar 

  65. 65.

    J. Ahmed, Z. Salam, A maximum power point tracking (MPPT) for PV system using Cuckoo search with partial shading capability. Appl. Energy 119(April), 118–130 (2014)

    Google Scholar 

  66. 66.

    J.Y. Shi, F. Xue, Z.J. Qin, W. Zhang, L.T. Ling, T. Yang, Improved global maximum power point tracking for photovoltaic system via cuckoo search under partial shaded conditions. J. Power Electron. 16(1), 287–296 (2016)

    Google Scholar 

  67. 67.

    K. Sundareswaran, S. Peddapati, S. Palani, MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies. IEEE Trans. Energy Convers. 29(2), 463–472 (2014)

    Google Scholar 

  68. 68.

    X.-S. Yang, Firefly Algorithms for Multimodal Optimization. In: Proc. 5th Int. Conf. Stoch. Algorithms Found. Appl. 169–178 (2009)

  69. 69.

    Y. M. Safarudin, A. Priyadi, M. H. Purnomo, M. Pujiantara, Maximum power point tracking algorithm for photovoltaic system under partial shaded condition by means updating?? firefly technique. In: Proc. - 2014 6th Int. Conf. Inf. Technol. Electr. Eng. Leveraging Res. Technol. Through Univ. Collab. ICITEE 2014, (2015)

  70. 70.

    D. Teshome, C.H. Lee, Y.W. Lin, K.L. Lian, A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 661–671 (2016)

    Google Scholar 

  71. 71.

    J.-Y. Shi et al., Tracking the global maximum power point of a photovoltaic system under partial shading conditions using a modified firefly algorithm. J. Renew. Sustain. Energy 8(3), 033501 (2016)

    Google Scholar 

  72. 72.

    L.L. Jiang, D.L. Maskell, J.C. Patra, A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 58, 227–236 (2013)

    Google Scholar 

  73. 73.

    A.S. Benyoucef, A. Chouder, K. Kara, S. Silvestre, O.A. Sahed, Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 32, 38–48 (2015)

    Google Scholar 

  74. 74.

    M. Miyatake, M. Veerachary, F. Toriumi, F. Nobuhiko, K. Hideyoshi, Maximum power point tracking of multiple photovoltaic arrays: a particle swarm optimization approach. IEEE Trans. Aerosp. Electron. Syst. 47(1), 367–380 (2011)

    Google Scholar 

  75. 75.

    A. Kouchaki, H. Iman-Eini, B. Asaei, A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions. Sol. Energy 91, 221–232 (2013)

    Google Scholar 

  76. 76.

    L. Ma, Y. Sun, Y. Lin, Z. Bai, L. Tong, J. Song, A high performance MPPT control method. In: ICMREE2011 - Proceedings 2011 International Conference on Materials for Renewable Energy and Environment, 1, 195–199 (2011)

  77. 77.

    M.F.N. Tajuddin, S.M. Ayob, Z. Salam, M.S. Saad, Evolutionary based maximum power point tracking technique using differential evolution algorithm. Energy Build. 67, 245–252 (2013)

    Google Scholar 

  78. 78.

    K.S. Tey, S. Mekhilef, H.T. Yang, M.K. Chuang, A differential evolution based MPPT method for photovoltaic modules under partial shading conditions. Int. J. Photoenergy 2014, 945906 (2014). https://doi.org/10.1155/2014/945906

    Article  Google Scholar 

  79. 79.

    M.A.M. Ramli, K. Ishaque, F. Jawaid, Y.A. Al-Turki, Z. Salam, A modified differential evolution based maximum power point tracker for photovoltaic system under partial shading condition. Energy Build. 103, 175–184 (2015)

    Google Scholar 

  80. 80.

    H. Renaudineau, A. Houari, J.P. Martin, S. Pierfederici, F. Meibody-Tabar, B. Gerardin, A new approach in tracking maximum power under partially shaded conditions with consideration of converter losses. Sol. Energy 85(11), 2580–2588 (2011)

    Google Scholar 

  81. 81.

    P. Lei, Y. Li, J.E. Seem, Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Trans. Sustain. Energy 2(3), 348–358 (2011)

    Google Scholar 

  82. 82.

    A. Elnosh, V. Khadkikar, W. Xiao, J. L. Kirtely, An improved extremum-seeking based MPPT for grid-connected PV systems with partial shading. In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, pp. 2548–2553. (2014). https://doi.org/10.1109/ISIE.2014.6865021

  83. 83.

    H. Heydari-doostabad, R. Keypour, M.R. Khalghani, M.H. Khooban, A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Sol. Energy 94, 28–36 (2013)

    Google Scholar 

  84. 84.

    T.L. Nguyen, K.-S. Low, A global maximum power point tracking scheme employing direct Search algorithm for photovoltaic systems. IEEE Trans. Ind. Electron. 57(10), 3456–3467 (2010)

    Google Scholar 

  85. 85.

    Á.A. Bayod-Rújula, J.A. Cebollero-Abián, A novel MPPT method for PV systems with irradiance measurement. Sol. Energy 109(1), 95–104 (2014)

    Google Scholar 

  86. 86.

    F. Kazan, S. Karaki, R. A. Jabr, A novel approach for maximum power point tracking of a PV generator with partial shading,” In: Proceedings of the Mediterranean Electrotechnical Conference - MELECON, no. April, 224–230 (2014)

  87. 87.

    Y. Hu, W. Cao, J. Wu, B. Ji, D. Holliday, Thermography-based virtual MPPT scheme for improving PV energy efficiency under partial shading conditions. IEEE Trans. Power Electron. 29(11), 5667–5672 (2014)

    Google Scholar 

  88. 88.

    M.Y. Javed, A.F. Murtaza, Q. Ling, S. Qamar, M.M. Gulzar, A novel MPPT design using generalized pattern search for partial shading. Energy Build. 133, 59–69 (2016)

    Google Scholar 

  89. 89.

    B. Yang et al., Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J. Clean. Prod. 215, 1203–1222 (2019)

    Google Scholar 

  90. 90.

    A.K. Podder, N.K. Roy, H.R. Pota, MPPT methods for solar PV systems: a critical review based on tracking nature. IET Renew. Power Gener. 13(10), 1615–1632 (2019)

    Google Scholar 

  91. 91.

    R. Ahmad, A.F. Murtaza, H.A. Sher, Power tracking techniques for efficient operation of photovoltaic array in solar applications—A review. Renew. Sustain. Energy Rev. 101, 82–102 (2019)

    Google Scholar 

  92. 92.

    A. Murtaza, M. Chiaberge, F. Spertino, D. Boero, M. De Giuseppe, A maximum power point tracking technique based on bypass diode mechanism for PV arrays under partial shading. Energy Build. 73(73), 13–25 (2014)

    Google Scholar 

  93. 93.

    R. Alonso, P. Ibáñez, V. Martínez, E. Román, A. Sanz, An innovative perturb, observe and check algorithm for partially shaded PV systems. I: 2009 13th European Conference on Power Electronics and Applications, EPE ’09, (2009)

  94. 94.

    S. Mohanty, B. Subudhi, P.K. Ray, A new MPPT design using grey Wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans. Sustain. Energy 7(1), 181–188 (2016)

    Google Scholar 

  95. 95.

    K. Chen, S. Tian, Y. Cheng, L. Bai, An improved MPPT controller for photovoltaic system under partial shading condition. IEEE Trans. Sustain. Energy 5(3), 978–985 (2014)

    Google Scholar 

  96. 96.

    R. Ramaprabha, M. Balaji, B.L. Mathur, Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. Int. J. Electr. Power Energy Syst. 43(1), 754–765 (2012)

    Google Scholar 

  97. 97.

    A. Khare, S. Rangnekar, A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl. Soft Comput. J. 13(5), 2997–3006 (2013)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aslam Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naseem, M., Husain, M.A., Minai, A.F. et al. Assessment of Meta-Heuristic and Classical Methods for GMPPT of PV System. Trans. Electr. Electron. Mater. 22, 217–234 (2021). https://doi.org/10.1007/s42341-021-00306-3

Download citation

Keywords

  • MPPT
  • Photovoltaic (PV)
  • Optimization
  • Partial shading