Skip to main content
Log in

Total Ionization Dose (TID) Effects on 2D MOS Devices

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Electronics and Electricals devices are used in radiations environments for space applications. Radiation has immense potential to disturb the basic properties of electronics devices by interfere with the devices. Radiations affect most MOSFET among the various electronics devices, by creating radiation induced total ionizing dose (TID) effects, single event effects and heavy ion displacement damages, will be discussed. TID effects are persuaded due to ionization energy established in oxides and insulators existing in the devices, by electrons, charged hadrons, neutrons and gammas, prominent to device degradation and letdown. This paper reviews, the basic mechanism of TID in SiO2 and other alternate oxides in device and how, this affects threshold voltage, Sub threshold swing and leakage current in MOSFETs. Radiations response to the silicon-on-insulator technology will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.R. Shaneyfelt, J.R. Schwank, D.M. Fleetwood, P.S. Winokur, K.L. Hughes, F.W. Sexton, Field dependence of interface trap buildup in polysilicon and metal gate MOS devices. IEEE Trans. Nucl. Sci. 37(6), 1632–1640 (1990)

    Article  CAS  Google Scholar 

  2. J.R. Schwank, D.M. Fleetwood, P.S. Winokur, P.V. Dressendorfer, C. Turpin, D.T. Sanders, The role of hydrogen in radiation in-duced defect formation in polysilicon gate MOS devices. IEEE Trans. Nucl. Sci. NS-34(6), 1152–1158 (1987)

    Article  CAS  Google Scholar 

  3. R. Sharp, M. Decréton, Radiation tolerance of components and materials in nuclear robot applications. Rel. Eng. Syst. Saf. 53, 291–299 (1996)

    Article  Google Scholar 

  4. B.R. Hancock, T.J. Cunningham, K. McCarty, G. Yang, C. Wrigley, P.G. Ringold, R.C. Stirbl, B. Pain, Multi-megarad (Si) radiation-tolerant integrated CMOS imager. Proc. SPIE 4306, 147–155 (2001)

    Article  Google Scholar 

  5. G. Cellere, P. Pellati, A. Chimenton, J. Wyss, A. Modelli, L. Larcher, A. Paccagnella, Radiation effects on floating-gate memory cells. IEEE Trans. Nucl. Sci. 48(6), 2222–2228 (2001). https://doi.org/10.1109/23.983199

    Article  CAS  Google Scholar 

  6. R.C. Hughes, Hole mobility and transport in thin SiO2 films. Appl. Phys. Lett. 26(8), 436–438 (1975)

    Article  CAS  Google Scholar 

  7. R.C. Hughes, Charge carrier transport phenomena in amorphous SiO2: direct measurement of the drift mobility and lifetime. Phys. Rev. Lett. 30(26), 1333–1336 (1973)

    Article  CAS  Google Scholar 

  8. F.B. McLean, H.E. Boesch Jr., T.R. Oldham, Electron-hole generation, transport, and trapping in SiO2, in Ionizing radiation effects in MOS devices and circuits. ed. by T.P. Ma, P.V. Dressendorfer (Wiley, New York, 1989), pp. 87–192

    Google Scholar 

  9. S.T. Pantelides, S.N. Rashkeev, R. Buczko, D.M. Fleetwood, D. Schrimpf, Reactions of hydrogen with Si_SiO2 interfaces. IEEE Trans. Nucl. Sci. 47(6), 2262–2268 (2000)

    Article  CAS  Google Scholar 

  10. M.R. Shaneyfelt, D.M. Fleetwood, J.R. Schwank, K.L. Hughes, Charge yield for cobalt-60 and 10 keV x-ray irradiations. IEEE Trans. Nucl. Sci. 38, 1187–1194 (1991)

    Article  Google Scholar 

  11. J.R. Schwank et al., Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55(4), 1833–1853 (2008)

    Article  CAS  Google Scholar 

  12. S. Manzini, A. Modelli, Tunneling discharge of trapped holes in silicon dioxide, in Insulating films on semiconductors. ed. by J.F. Verweij, D.R. Wolters (Elsevier, New York, 1983), pp. 112–115

    Google Scholar 

  13. C.M. Dozier, D.B. Brown, Effects of photon energy on the response of MOS devices. IEEE Trans. Nucl. Sci. 28(6), 4137–4141 (1981)

    Article  Google Scholar 

  14. D.M. Fleetwood, Long-term annealing study of midgap interface-trap charge neutrality. Appl. Phys. Lett. 60(23), 2883–2885 (1992)

    Article  CAS  Google Scholar 

  15. J.R. Schwank, P.S. Winokur, F.W. Sexton, D.M. Fleetwood, J.H. Perry, P.V. Dressendorfer, D.T. Sanders, D.C. Turpin, Radiation induced interface state generation in MOS devices. IEEE Trans. Nucl. Sci. NS-33(6), 1178–1184 (1986)

    CAS  Google Scholar 

  16. P.S. Winokur, Radiation-induced interface traps, in Ionizing Ra-diation effects in MOS devices and circuits. ed. by T.P. Ma, P.V. Dressendorfer (Wiley, New York, 1989), pp. 193–255

    Google Scholar 

  17. M.R. Shaneyfelt, J.R. Schwank, D.M. Fleetwood, P.S. Winokur, K.L. Hughes, G.L. Hash, Interface-trap buildup rates in wet and dry oxides. IEEE Trans. Nucl. Sci. 39(6), 2244–2251 (1992)

    Article  CAS  Google Scholar 

  18. H.J. Barnaby, Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans. Nucl. Sci. 53(6), 3103–3121 (2006)

    Article  Google Scholar 

  19. T.R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50(3), 483–499 (2003)

    Article  CAS  Google Scholar 

  20. D.M. Fleetwood, Fast and slow border traps in MOS devices. IEEE Trans. Nucl. Sci. 43(3), 779–786 (1996)

    Article  CAS  Google Scholar 

  21. F. Faccio, G. Cervelli, Radiation-induced edge effects in deep sub-micron CMOS transistors. IEEE Trans. Nucl. Sci. 52(6), 2413–2420 (1996)

    Article  Google Scholar 

  22. J.Y. Park et al., Local electro-thermal annealing for repair of total ionizing dose-induced damage in gate-all-around MOSFETs. IEEE Electron Device Lett. 37(7), 843–846 (2016)

    Article  CAS  Google Scholar 

  23. W.L. Warren, M.R. Shaneyfelt, D.M. Fleetwood, J.R. Schwank, P.S. Winokur, R.A.B. Devine, Microscopic nature of border traps in MOS devices. IEEE Trans. Nucl. Sci. 41(6), 1817–1827 (1994)

    Article  CAS  Google Scholar 

  24. H.E. Boesch Jr., F.B. McLean, Hole transport and trapping in field oxides. IEEE Trans. Nucl. Sci. NS-32(6), 3940–3945 (1985)

    Article  CAS  Google Scholar 

  25. A.H. Perera, J.-H. Lin, Y.-C. Ku, M. Azrak, B. Taylor, J. Hayden, M. Thompson Blackwell, Trench isolation for 0.45 m active pitch and below. IEDM Tech. Dig. 26, 679 (1995)

    Google Scholar 

  26. M.R. Shaneyfelt, P.E. Dodd, B.L. Draper, R.S. Flores, Challenges in hardening technologies using shallow-trench isolation. IEEE Trans. Nucl. Sci. 45(6), 2584–2592 (1998)

    Article  CAS  Google Scholar 

  27. B. Davari, C. Koburger, T. Furukawa, Y. Taur, W. Noble, A. Megdanis, J. Warnock, J. Mauer, A variable-size shallow trench isolation (STI) technology with diffused sidewall trench doping for submicron CMOS. IEDM Tech. Dig. 95, 92 (1988)

    Google Scholar 

  28. D. Woodbury, R.M. Schwartz, H.M. Milchberg, Measurement of ultralow radiation-induced charge densities using picosecond mid-IR laser-induced breakdown. Optica 6(6), 811–820 (2019)

    Article  CAS  Google Scholar 

  29. I. Sanchez Esqueda, H.J. Barnaby, M.P. King, Compact modeling of total ionizing dose and aging effects in MOS technologies. IEEE Trans. Nucl. Sci. 62(4), 1501–1515 (2015)

    Article  Google Scholar 

  30. Z. Zheng, X. Zhao, K. Zhao, J. Gao, B. Li, F. Yu, X. Liu, Comparison of the total dose responses of fully depleted SOI nMOSFETs with different geometries for the worst case bias conditions. IEEE Trans. Nucl. Sci. 66(10), 2207–2214 (2019)

    Article  CAS  Google Scholar 

  31. V. Ferlet-Cavrois, T. Colladant, P. Paillet, J.L. Leray, O. Musseau, J.R. Schwank, M.R. Shaneyfelt, J.L. Pelloie, J. du Port de Poncharra, Worst-case bias during total dose irradiation of SOI transistors. IEEE Trans. Nucl. Sci. 47(6), 2183–2188 (2000)

    Article  CAS  Google Scholar 

  32. K. Akarvardar, R.D. Schrimpf, D.M. Fleetwood, S. Cristoloveanu, P. Gentil, B.J. Blalock, Evidence of radiation-induced dopant neutralization in partially-depleted SOI NMOSFETs. IEEE Trans. Nucl. Sci. 54(6), 1920–1924 (2007)

    Article  CAS  Google Scholar 

  33. Z. Zheng, X. Zhao, K. Zhao, J. Gao, B. Li, F. Yu, X. Liu, Comparison of the total dose responses of fully depleted SOI nMOSFETs with different geometries for the worst case bias conditions. IEEE Trans. Nuclear Sci. 66(10), 2207–2214 (2019)

    Article  CAS  Google Scholar 

  34. V. Ferlet-Cavrois, S. Quoizola, O. Musseau, O. Flament, J.L. Leray, L. Pelloie, C. Raynaud, O. Faynot, Total dose induced latch in short channel NMOS/SOI transistors. IEEE Trans. Nucl. Sci. 45(6), 2458–2466 (1998)

    Article  CAS  Google Scholar 

  35. J.R. Schwank, M.R. Shaneyfelt, P.E. Dodd, J.A. Burns, C.L. Keast, P.W. Wyatt, New insights into fully-depleted SOI rransistor re-sponse after total-dose irradiation. IEEE Trans. Nucl. Sci. 47(3), 604–612 (2000)

    Article  Google Scholar 

  36. J.R. Schwank, V. Ferlet-Cavrois, M.R. Shaneyfelt, P. Paillet, P. Dodd, Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 50(3), 522–538 (2003)

    Article  CAS  Google Scholar 

  37. S. Toguchi, E.X. Zhang, M. Gorchichko, D.M. Fleetwood, R.D. Schrimpf, R.A. Reed, F. Andrieu, Total-ionizing-dose effects on 3D sequentially integrated, fully depleted silicon-on-insulator MOSFETs. IEEE Electron Device Lett. 41(4), 637–640 (2020)

    Article  CAS  Google Scholar 

  38. K. Xi, J. Bi, J. Chu, G. Xu, B. Li, H. Wang, M. Sandip, Total ionization dose effects of N-type tunnel field effect transistor (TFET) with ultra-shallow pocket junction. Appl. Phys. A 440, 126 (2020)

    Google Scholar 

  39. Z. Ren, X. An, G. Li, G. Chen, M. Li, G. Yu, R. Huang.: TID response of bulk Si PMOS FinFETs: bias, fin width and orientation dependence. IEEE Trans. Nuclear Sci. 67(7), 1320–1325 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Bala.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest and no funding applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, S., Kumar, R. & Kumar, A. Total Ionization Dose (TID) Effects on 2D MOS Devices. Trans. Electr. Electron. Mater. 22, 1–9 (2021). https://doi.org/10.1007/s42341-020-00255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00255-3

Keywords

Navigation